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ABSTRACT

The Cassini  spacecraft’s Attitude and Articulation Control Subsystem has been tested extensively
at the Jet Propulsion Laboratory in Pasadena, California. Three of the subsystem’s assemblies
have been tested using assembly simulators in place of actual hardware. These simulators have
been designed and tested to ensure as much commonality with the hardware as possible. Several
early design choice have impacted the degree to which the simulators have matched the hardware,
the most crucial decision concerning the interface between the assembly simulators and the flight
hardware. However, these difficulties were overcome and all testing requirements were satisfied.

The use of simulators has resulted in increased testing ability due to the small number of flight
components constructed. Though this experience, several key lessons were learned, chief among
them being clear definition of expectations and the importance of defining simulation interfaces as
identical as possible to the flight equipment. Assembly simulators, properly developed, should
prove a valuable alternative to physical hardware testing for future flight projects.

Thesis Advisor: Professor Steven R. Hall
Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

In October 1997, a Titan IV/Centaur launch vehicle will lift the Cassini  spacecraft towards Saturn,

beginning the last in a series of grand tour missions that included the Voyager probes and the Ga-

lileo spacecraft. Cassini’s mission is to deliver the Huygens  Titan probe to the surface of Titan and

to perform an orbital analysis of the Saturinan  system. The spacecraft has been developed and test-

ed primarily by the California institute of Technology’s Jet Propulsion Laboratory (JPL) for

NASA’s Office of Space Science.

The attitude and articulation control subsystem (AACS) for Cassini has been extensively tested at

JPL through a comprehensive closed loop testing plan. The AACS has a number of inputs to allow

for support equipment to simulate the outside environment of the spacecraft during the mission.

Examples of these inputs include accelerometer and gyroscope biases, simulated starfields and

simulated sun sensor inputs. Interfaces external to the AACS are also simulated. These include the

Command and Data Subsystem (CDS), the Power and Pyrotechnic Subsystem (PPS) and the Pro-

ptdsion  Module Subsystem (PMS). This allows for the hardware to experience flightlike  condi-

tions (with the exception of environmental conditions) and makes closed loop testing possible.

However, in many cases it is not possible for a complete set of AACS hardware to undergo this

extensive testing. During the busiest testing period, three laboratories are running simultaneously

at JPL for AACS testing. For most of the hardware, there exists sufficient flight hardware to ac-

commodate these laboratories. But for three assemblies, this is not the case. Due to the high cost

of these assemblies and the quicker development time of simulators, the reaction wheel assembly,

the inertial reference unit and the engine gimbal actuators are replaced by assembly simulators

during closed loop testing.

These simulators play a pivotal role in AACS testing. During pre flight testing, the simulators must

act sufficiently like the flight units to permit testing of software functionality and mission sequenc-

es. After launch, these simulators are even more important as they become the only mechanism

by which testing of sequences or anomalies can occur.

This thesis evaluates the effectiveness of these simulators during testing of the AACS at JPL. With

all of the laboratories relying on these simulators after launch, it is very impo]lant  to understand

the consequences of this approach. As the trend to drive down develop costs in space missions

8



continues, there is every reason to expect that future missions will have to rely on assembly simu-

lators in an ever increasing capacity. Evaluation of these assemblies of the Cassini  spacecraft is a

step toward developing a knowledge base that could be used when considering different testing op-

tions in the future.

This thesis begins with a description of the closed loop testbed at JPL and how the laboratory en-

vironment works. This is followed by an analysis of the testing of the engine gimbal actuators, the

inertial reference unit and the reaction wheel assembly. Finally, we conclude with an evaluation

of the testbed as a whole as well as lessons learned during closed loop simulation.



Chapter 2

Closed Loop Attitude Control Testing

2.1 AACS

The attitude and articulation control subsystem is responsible for attitude determination and con-

trol during all phases of the mission. The components of the AACS are shown in figure 2.1 and

are described briefly below.

● AACS Flight Computer (AFC): The AFC is responsible for acting on commands from the com-

mand and data subsystem (CDS) concerning guidance, navigation and control. The system is

dually redundant and interfaces with the AACS databus, the CDS databus and the power and

pyrotechnic subsystem (PPS). The AFC direct access port is used to send commands to the

AFC when the CDS is not present during test. The AFC also interfaces with the Stellar Refer-

ence Unit through a dedicated databus used to gather pixel information during Star Identifica-

tion.

● Accelerometer (ACC): The accelerometer is used to determine changes in velocity along the

spacecraft Z axis. The accelerometer is a non redundant component that interfaces with the

PPS and the AACS databus. The accelerometer has a direct access port that allows for simu-

lation of Z axis acceleration during testing.

● Backdoor ALF Injection Loader (BAIL): This assembly is a fault protection device that is used

to provide a level of redundancy in the event that CDS has difficulty loading the AFC with its

soft ware. The BAIL contains accelerated load format (ALF) data blocks that can load the AFC

in the event of problems with nominal loading via CDS.

● Engine Gimbal Electronics/Actuators (EGE/EGA): The EGA’s articulate the gimbals attached

to the dual main engines of the spacecraft. The EGA’s are controlled by the EGEs, which in-

terface with the AACS databus.

● Inertial Reference Unit (IRU): The dual redundant IRU uses a set of four hemispherical resonat-

ing gyros (HRG) to provide inertial rate information to the AFC for use in attitude control.

● Reaction Wheel Assembly (RWA): There are four RWA’s on the spacecraft. Three of these are

arranged for use as actuators during attitude control. The fourth wheel is redundant and can be

positioned to replace any of the three primary wheels in the event of a failure.

● Stellar Reference Unit (SRU): The dual redundant SRU is a sensor used to determine position

10
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and attitude during the cruise portion of Cassini’s mission. It utilizes a charged coupled device

(CCD) camera to detect bright bodies in its field of view and this data is passed to the AFC via

a pixel interface unit (PIU) for processing.

● Sun Sensor Assembly (SSA): The dual redundant sun sensor assembly is used to detect the po-

sition of the sun during attitude determination. Sun sensor heads are placed on the high gain

antenna and generate voltages proportional to the amount of light that hits the heads.

● Valve Drive Electronics (VDE): The valve drive electronics are used to interface with the Pro-

pulsion Module Subsystem to open and close the various thrusters used for attitude control and

as well as the main engine valves.

2.2 AACS Closed Loop Testbeds

2.2.1 ITL

The primary lab for integration and test of the AACS at the subsystem level is the Integration and

Test Laboratory (ITL). The purpose of the ITL is to perform hardware integrations of the AACS

subsystem and test functional sequences of the Cassini mission. All flight hardware as well as en-

gineering models or flight spares are tested in the ITL to ensure proper electrical configuration

when the assembly is integrated with the AACS databus, the Power and Pyrotechnic Subsystem

(PPS) and the Propulsion Module Subsystem, if applicable (VDE, EGE/EGA). For this purpose,

there are hardware simulators of the PPS and PMS in the ITL that allow testing of the interfaces to

these subsystems.

For testing functional sequences, the ITL has an extensive set of support equipment hardware and

software. The hardware and software work together to simulate the external interfaces to the

AACS and permits closed loop testing. Support equipment hardware consists of a series of com-

puters and additional equipment which interface with the users of the system as well as the hard-

ware. This equipment includes an Inertial Sensors Controller (INS Controller) that permits biasing

of the accelerometer and inertial reference unit, the assembly simulator hardware for the engine

gimbal actuators, the inertial reference unit and the reaction wheel assembly, electronics to gener-

ate bias voltages to send to the sun sensor assembly and star field data to send to the stellar refer-

ence unit, and equipment to interface with the AACS Flight Computer. The hardware also includes

the simulators for the command and data subsystem, the PPS and the PMS.[2]

Support equipment software is an extensive network of computer programs working to simulate
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the outside environment of the spacecraft. The programs fall into two large groups-- real time and

non real time. Real time programs consist of the assembly simulator software, subsystem simula-

tion soft ware (e.g. CDS, PPS, PMS), as well as software to monitor different assemblies and report

on their status. The non-real time software includes tasks such as user console interfacing and gen-

eration of displays.

The software also uses the concept of a “blackboard” to provide for data visibility across the sim-

ulation. The software runs on a set of five processors called chassis. These processors must work

in a synchronized fashion and timing is very critical. Therefore, the processors use shared memory

to facilitate data transfer. All of the chassis use the same set of memory to read and write variables.

This means that all of the processors knows what the state of the system is at any given time. This

is analogous to how a common blackboard is used so that all those in a room have a consistent data

set, and thus this reflective memory is know as the blackboard. [4]

Finally, the dynamics of the simulation are propagated in real time via a computer program called

DARTS- Dynamic Algorithms for Real Time Simulation. This program was developed by A. Jain

of the Jet Propulsion Laboratory and computes the time rate of change of the state of the Cassini

spacecraft as a dynamical system[3]. The program accepts any number of actuators, sensors and

flexible modes and thus is what makes closed loop dynamics testing possible for Cassini.

The ITL also permits some level of system mode testing. The Command and Data Subsystem is

usually simulated in the ITL, but for some testing, the actual CDS is used and the AACS Flight

computer takes its commands from the actual command computer. This permits testing of the

CDS-AACS interface in the ITL before assembly, test and launch operations begin.

2.2.2 Cassini AACS Test Station

There also exists the Cassini  AACS Test Station (CATS) for development of flight and support

software. CATS is similar to the ITL in that actual hardware is present in most cases, support

equipment hardware processors are used to interface with the hardware and users, and a closed loop

dynamics environment is possible with the use of DARTS. The major difference between CATS

and ITL is their purpose. ITL is used to test electrical interfaces of the flight hardware and thus all

hardware that is flight certified in first tested in the ITL before delivery to the Spacecraft Assembly

Facility. CATS, on the other hand, is used to test the software of the system. The hardware is
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present, but electrical “breadboards” are primarily used in CATS. The functionality of these bread-

boards is identical to the flight units in most cases, but shielding, grounding and electrical interfac-

es may be different.

2.2.3 Assembly, Test and Launch Operations

Assembly, Test and Launch Operations (ATLO) for Cassini  began in late 1995 and will continue

through launch of Cassini  in October, 1997. Primarily testing occurs at the Spacecraft Assembly

Facility at JPL. At this location, the flight hardware is integrated together for the final time. Also,

many of the simulators are not present. The PPS hardware is there, and thus all power comes from

the actual PPS. There are no assembly simulators once all the hardware is integrated. The CDS is

also present and there is no CDS simulator. However, there is one simulator still present, The PMS

simulation is still running in ATLO due to the danger to personnel of testing main engine firings

and reaction control thrusters. The Propulsion Module is tested separately by Lockheed Martin for

the vast majority of the testing period. During most testing in ATLO, the DARTS simulation is

still present and permits closed loop testing. The exception is during environmental testing when

the support equipment is disconnected and no closed loop testing is conducted.

Throughout the testing plan, the EGAs, RWAS and IRUS are simulated in the ITL, and in CATS.

The real hardware is present for interface checkout in the ITL and during ATLO testing. The next

sections go into detail concerning the three assembly simulators and evaluates their usage in the

testing of Cassini’s AACS.
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Chapter 3

Engine Gimbal Actuators

3.1 Description

The purpose of the engine gimbal actuators is to rotate the main engines of the propulsion module

subsystem about their gimbal axes in response to commands by the AACS flight computer. The

main engines are rotated such that the thrust vector-passes through ttie center of mass of the space-

craft as well as in the desired inertial direction. The IRU and ACC are used in conjunction with

the EGA’s to determine this direction as well as to determine when the required velocity change

has been achieved.

A signal flow for the EGA’s is shown in figure 3.1. The actuators act on extension commands pro-
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Figure 3-1 Engine Gimbal Actuator Block Diagram

vialed by the AACS flight computer through the engine gimbal electronics. The extension is con-

trolled by comparing the actual positions of the actuators to the desired position and correcting the

position by altering the motor voltage. The actual positions are determined by the feedback signal

from a Linear Variable Differential Transformer (LVDT) that is attached to each actuator. The

electronics that control the position consist of a control unit and a driver. The driver accepts volt-

age commands from the control unit and generates excitation signals for the motor and the LVDT

of the actuator. The control unit accepts commanded extensions off the AACS databus and the
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LVDT feedback signal. The control unit generates a digital representation of the LVDT signal for

the databus as well as the voltage commands for the driver.

3.2 Cassini  Laboratory Configuration

The Engine Gimbal Actuators are simulated in the ITL and CATS through a combination of a hard-

ware simulator and a software dynamics interface. The purpose of the hardware is to simulate the

engine gimbal actuators and generate a feedback signal that represents the LVDT signal for the real

actuators. The dynamics software accepts the commanded extensions and the LVDT extension in-

formation and then computes the main engine thrust vector direction for use in the DARTS simu-

lation.

3.2.1 EGA Hardware Simulator

Description

The EGE hardware simulator was designed to simulate the LVDT feedback information that is

supplied by the real EGAs in response to the LVDT excitation signal and the motor drive input. A

block diagram is shown in figure 3.2.

To simulate the LVDT, the EGA hardware simulator consists of a motor simulator and the LVDT

simulator. The motor simulator accepts the EGE drive signal and passes it through an optical iso-

lator. The signal is scaled such that a position signal is generated that is proportional to the com-

manded position of the actuator. Then, this signal is multiplied by the LVDT excitation signal, also

received from the EGE. The multiplication retains the sign of the motor drive signal and the result

thus simulates the LVDT feedback signal.

Validation Test

When the engine gimbal actuators are integrated into the subsystem in the ITL, they are integrated

per a hardware integration procedure. This procedure exercises the actuators and ensures that they

perform adequately. Since the simulators and the real actuators are integrated using the same pro-
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cedure, the data can be compared to evaluate the simulators.
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Figure 3-2 Engine Gimbal Actuator Hardware Simulator

The actuators (or simulators) are exercised through a series of extensions during the integration

procedure. The results of this procedure was that the simulators perform to within specified toler-

ances and track the hardware very well and these results are summarized below:

● Average absolute deviation from the commanded position for simulation serial number 005 was

0.0326 mm.

● Average absolute deviation from the commanded position for simulation serial number 010 is

was 0.0215 mm.

● Cassini AACS requirement: O. 1 mm deviation.

Even though the AACS requirement was met on average, the maximum error did deviate from the

AACS requirement for both of the simulators. This deviation was deemed acceptable for testing,

however. This is because Cassini fault protection will activate if the deviation is greater than 0.27

mm for two consecutive readings of the EGA (reading occur every 125 ins). This behavior was

not observed when testing either the EGA’s or the EGA simulators and thus the EGA simulators

were accepted for testing. Due to the variance of the EGA positions, the power measurements of
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the EGAs also had more variance than with the flight equipment, but this was also acceptable. [5]

Differences and Problems

One problem that did occur during testing is that a fault protection error in flight software was not

found in the ITL testing and the bug was discovered when the fault protection autonomously pow-

ered down the EGA driver during integration of the flight Propulsion Module Subsystem on the

actual spacecraft. The investigation concluded that the EGA simulators were not designed to sim-

ulate an EGA under actual flight loading conditions. Therefore, the first time the flight software

interfaced with an EGA loaded onto a gimbal and a Main Engine was during ArLO testing. This

brought out one of the important lessons learned through AACS testing. If the requirements are

not stated clearly at the outset and thought through in their entirety, unforeseen events may occur.

The result of this testing in ALTO was a decision to use flight spare EGAs attached to a load fixture

for future testing. Thus the EGA simulators will not be used for post launch ITL analysis activities.

3.2.2 EGA Dynamics Model

Description

To properly represent the motion of the EGA’s in the closed loop dynamics simulation, the support

equipment software must ensure that the main engine thrust vector direction is consistent with the

EGA extensions. To accomplish this, a software “model” of the EGA accepts information form

the EGA (or EGA simulator) and computes the main engine thrust vector. The relationship be-
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tween the EGA (or simulator) and the EGA “model” is shown in figure 3.3 and is described below.
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FLIGHT EQUIPMENT

Figure 3-3 Engine Gimbal Actuator Dynamics Model

The model consists of three modules: ega_model, ega_kinematics and ega_extension.  The first

module, ega_model, accepts the LVDT and commanded extension information and computes the

new extensions of the actuators. This is done without regard to dynamics and the extension is sim-

ply set to the current commanded extension. The only exception is if the step required to update

the position is too high. In this case, the model updates the extension with a series of smaller steps.

Once the extensions are computed, ega_kinematics is called. This module  calculates the thrust

vector by first computing the gitnbal  angles (accomplished by the module ega–extensid and then

transforming the angle information into the main engine thrust vector direction. Once the thrust

vector direction is known, this information is used during the next iteration of the dynamics simu-

lation.
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Validation Testing and Results

The EGA model was validated by comparing resulting engine gimbal angles to analytical predicts.

The EGAs were commanded to several different positions and the computed main engine thrust

vector was recorded. Given this thrust vector, a solution for the EGA position was derived and

compared to the commanded position. The data was consistent and the model was validated in this

isolated case. The table below shows the predicted and actual values for the EGA extensions in

response to several command to stroke the gimbal  actuators.

‘E-GA P Commanded I ECiA P Actual I EGA Q Commanded I EGA Q Actual

o 0 19 18

1563 1563 0 0
1563 1563 1563 1563

-155 I -155 I 1563 I 1564

-155 -155 961 962

-963 -963 961 962

-963 -963 -1563 -1562

155 155 -1563 -1562

155 )55 -961 -960

0 0 -961 -960
0 0 -1 0

960 962 -1 1

960
—

962 -960 -961

-1563 -1562 -960 -959
-1563 -1563 -1563 -1562

-962 -962 -1563 -1562

1563 1563 961 961
1563 I 1563 I 1563 I 1563

0 0 1563 1564

0 0 0 1

3.2.3 Closed Loop Simulation

The two primary test activities of the laboratory that have validated the described EGA simulation

have been the Main Engine Trajectory Correction Maneuver (TCM) Testing and Fault Injection
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Testing. The purpose of the Main Engine TCM is to test the hardware and software under a real-

istic set of circumstances where the main engine is used to alter the path of the spacecraft, Preci-

sion Thrust Vector Control (TVC) is performed by the flight software and it is critical that the

dynamic model of the actuators alter the thrust vector as commanded by the flight software. As

the following data in figures 3.4 and 3.5 shows, the EGA simulators performed well in a closed

loop environment. The X and Y components of the thrust vectors of the simulation(py_me_[O  and
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Figure 3-4 Simulated and Flight Software Thrust Vectors in the X direction
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Figure 3-5 Simulated and Fight Software Thrust Vectors in the Y direction

1]) and what flight software believed to be the thrust vector (Thr_[X and Y]) matched very well.

A Z component comparison is not available since the flight software does not record Z axis data

since the direction cosine is so close to one.

Another closed loop aspect of the EGA simulation is the task of injecting faults into the simulation

to test the fault protection responses. The EGA simulator was designed to interface with the sup-

port equipment exactly like the real hardware. Thus, it was not possible to simulate any faults that

involved hardware failure. The software dynamics model could have been altered to simulate

many faults, but since there is no way to alter the EGA hardware simulator there was no need. If

the model was to simulate a stall, for example, it could easily be disabled from the rest of the sim-

ulation. This would not be possible for the hardware, however, and the result would be flight soft-

ware receiving an external disturbance with no indication that a stalled EGA is the cause.
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3.3 Evaluation

The EGAsimulation  mettherequirement  fortest of theengine  gimbal electror~ics. Specifically,

the EGA simulator did not cause fault protection to activate unexpectedly during testing in either

CATS or ITL. This facilitated testing of the flight software, as well as the Main Engine Trajectory

Correction Maneuver. Due to the nature of the hardware simulator, testing of the fault protection

capabilities was not performed. When the flight actuators were integrated with the AACS and the

flight PMS, fault protection did activate unexpectedly. But since the EGA simulators were never

meant to simulate a loaded EGA, the conclusion is that the EGA simulator did perform adequately

during AACS testing.
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Chapter 4

Inertial Reference Unit

4.1 Description

The Inertial Reference Unit (IRLJ) is a dual redundant assembly that is used to detect inertial angu-

lar velocity of the spacecraft. Each IRU contains four hemispherical resonating gyroscopes and

processing electronics. The IRU contains its own processing circuitry that interfaces with the

AACS databus RTIOU and the gyroscopes. A block diagram of the IRU is shown in figure 4. 1.[6]
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Figure 4-1 Inertial Reference Unit Block Diagram
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The gyroscopes each run at a frequency of approximately 2000 Hz and a rate estimate is obtained

from the gyroscope every cycle. The SHARC processor has software that runs at 100 Hz. Each

time the software loop is executed, the rate measurements since the last time the software was ex-

ecuted are integrated and the angle is added to the data that will be passed to” the flight computer.

The flight computer can read the accumulated angle or the IRU status from the IRU. The AFC can

also write data to the IRU. This data, for example, would be new software to the SHARC in the

event of an IRU reset.

4.2 Cassini  Laboratory Configuration

As in the case with the EGA simulation, there are two parts to the IRU simulation- an assembly

simulator and a dynamics model. The assembly simulator is software that represents the IRU when

the actual hardware is unavailable in the laboratory. The dynamics model is used to generated bi-

ases for the IRU by converting the spacecraft angular rates to rates in the gyro sensing axes which

are used to bias either the real gyros or the simulator.

4.2.1 IRU Assembly Simulator

Description

The assembly simulator has the function of accepting biases from the dynamics interface and con-

verting these biases into data for the flight software to interpret. This simulator consists of three

parts. The first is a remote terminal input output unit. This unit is a remote terminal on the Cassini

AACS databus and facilitates communication with the AACS flight computer. The second com-

ponent is an interface card that communicates with the RTIOU. This card is a series of static RAM

registers that the simulator can write to. This allows the software to act as the actual hardware by

interfacing with the RTIOU similar to the actual hardware. The third component is the actual soft-

ware for the IRU simulator. The software supports five functions of the IRU: power on initialize- -

tion of the IRU output data, IRU Built in Test (BIT), IRU SHARC software download, IRU “soft

reset”, and normal operation of the IRU. The data flow through these five functions are shown in
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figure 4.2.

/

No
Clear registers

I

yes

yes
Initialize and starl BIT

I

no +

yes

set status and set download

I

wait for reset

to complete

no

no

yesJ
Begin Nominal Operation

\ .—

Figure 4-2 IRU Assembly Simulator Flow Diagram
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Upon receipt of a power on command, the simulator sets all output information to zero and sets a

timer to begin the BIT. The BIT simulation is a one second hold that simulates the time for the

SHARC built  in test. Once this hold is complete, the IRU simulator reports this information via

the RTIOU to the flight software and sets a flag indicating readiness to begin the software down-

load. The software download function is simulated by verifying receipt of the data sent by the

flight software and then indicating a valid checksum and a valid load. The soft reset is another one

second hold for the simulator and results in reporting a good status message back to the flight soft-

ware after completion of the hold.

Finally, there is the actual operation of the IRU. The software checks for a soft reset and if none

occurs, the software proceeds to calculate the outputs of the gyroscopes. Since the IRU simulator

receives the rates the gyroscopes sense in the gyroscope coordinate system, the simulator simply

has to convert these rates into a change in angle and properly format this information for the

RTIOU. This is accomplished by multiplying the rate received by the IRU cycle time and adding

this angle to the last angle computed to determine the accumulated angle. Once this is accom-

plished, the angle is converted to a form compatible with the RTIOU and the data is passed to the

flight software.

Validation Testing and Results

This simulator was integrated into the ITL and CATS with the same integration procedure that was

used for the actual flight hardware. Thus, we have a common test to compare the simulator and

the hardware with. During the integration procedure, the gyros are biased with a set of support
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equipment commands. Figures 4.3and 4.4 show the result of these commands.
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Figure 4-4 IRU Simulator and Hardware Comparison

As the data shows, the IRU simulators matched the performance of the flight equipment very well.

Differences and Problems

Integration revealed some problems with the simulator that have been corrected to increase the fi-

delity of the software. The first problem was with the processing cycle. The original version of

the software integrated at the same speed as the dynamic simulation, 16 Hz. This is not consistent

with the actual hardware, which reads data from all four gyros at a speed of 100 Hz. There is the

danger that the simulator was running too slow and unrealistically large changes in angles would

be reported by the simulator. It would be more consistent with the hardware if the software ran at

a speed of 400 Hz and processed one gyroscope at a time. When all four gyros were processed,

the simulator made this data available to the flight software through the RTIOU. This configura-
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tion change was implemented and performs very well.

A second problem was with the noise of the IRU. The original model did not have any simulation

of gyroscope noise and once again a change would improve fidelity. The final solution was for the

model to cycle through a large set of experimental data representing realistic numbers for gyro-

scope noise. These numbers would be added to the output of the gyroscope and would simulate

noise coming from the IRU gyroscopes,

A final problem was with the timing of the simulator. In reality, the IRU has a double buffer that

is used to prevent the flight software from reading partially updated data, One of these buffers al-

ways has a complete packet of information for the flight software. However, the assembly simu-

lator card does not support double buffering. Thus, flight software was reading the information out

of the IRU simulator, but the information was not completely updated. To correct this problem,

the assembly simulator card was modified such that when flight software was reading the informa-

tion from the card, a signal was sent to the IRU assembly simulator. The software was changed to

verify this signal was not active before a read was attempted. If this signal was sensed, output was

delayed until the read was concluded, This correction worked very well and the information to the

flight software was valid.

The general conclusion is that once coding errors are corrected, the simulator does act sufficiently

like the hardware to permit testing. However, there are several aspects of the hardware that are not

simulated. Essentially, the actual computation of the SHARC is not simulated. The Built In Test

is not actually performed. Instead, a timer simulates the delay the BIT would cause in the process-

ing cycle. Similarly, the checksum during the download of the new SHARC software is not per-

formed. Again, a timer is used to simulate the delay of the download and checksum. This was

done because simulation of the actual SHARC software was not an objective in the IRU simula-

tion. The basic philosophy was that the inputs and outputs of the IRU would be as identical as the

software team could make them to the hardware. Thus the simulator can report that the data has

been received or that a BIT has been performed, but the BIT or data download may not have actu-

ally happened in the simulation software. This black box concept has important consequences

when fault injection is considered.

One of the advantages of using simulators is that the test analyst has the ability to simulate faults

without damaging actual hardware. However, with the IRU simulator, any faults to the SHARC

or other processing electronics cannot be simulated. The simulators were designed such that the
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“outside world” only “has a command path to the simulator if it has a command path to the actual

device. Therefore, since one cannot command a BIT failure with the actual hardware, for example,

it was decided that one would not be able to with the simulators either. Any fault injection would

have to be possible with either real hardware or simulators and thus involve changing existing in-

puts into the devices. For example, it was possible to simulate a failed gyro by sending a large bias

into one of the gyros. The SHARC or IRU simulator would see this large rate on one of the gyros

and declare that gyro’s data invalid. But failures internal to the IRU would have to be simulated

on another testbed.

4.2.2 Gyro Dynamics Model

The gyro model within the dynamics simulation computes the biases that are sent to the IRU as-

sembly simulator model. The model is straightforward. First, the locations of the gyroscopes and

the transformations of the angular rates of the spacecraft from spacecraft to the gyro sensing axes

were determined and loaded into the model. Then the model accepts the spacecraft angular rates

from the DARTS simulation and converts these to rates that the gyroscopes sense. Then this in;

formation is passed to the IRU model as described above, The interaction between the model and
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the simulation is shown in figure 4.5.
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Figure 4-5 Inertial Reference Unit Dynamics Model

The gyroscope dynamics model was validated as a part of the closed loop simulation described be-

low.

4.2.3 Closed Loop Simulation

The inertial reference unit simulator was used extensively in all laboratories during the testing of

the Cassini  AACS. The criterion for success of the simulator is how effectively the simulated an-

gular rates of the dynamics simulation are reported to the flight software. This can be shown by

examining the reported spacecraft rate and the simulated rate. This is shown in figures 4.6 through
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4.8. the variable “b_ang_fi_[x,y  or z]” is the angular rate being simulated and the variable “[X,Y
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or Z]_rate” is what flight software is reporting the angular rate to be after converting data from the

IRU simulator. Both sets of rates track extremely well and we conclude that the IRU simulator

performs well in the closed loop environment.

4.3 Evaluation

The Inertial Reference Unit simulator has performed very well in all three laboratories and has

proven a valuable tool when IRIJ hardware was unavailable. The integration and test of the simu-

lator revealed that the simulator had several shortcomings, but once these were corrected the sim-

ulator had a high degree of fidelity when compared to the actual hardware and closed loop

performance during flight sequences have been excellent, The IRU assembly simulator represents

the actual hardware well and, even though fault injection testing was limited, still performed ade-

quately in ITL and CATS.
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Chapter 5

Reaction Wheel Assembly

5.1 Description

The Cassini spacecraft hastwosources ofattitude control. The first source isthe Propulsion Mod-

ule Subsystem consisting of the main engines and 16 reaction control thrusters. The second form

of control is the reaction wheel assembly. There m-e four reaction w%eels on the spacecraft, three

of which are the primary reaction wheels and the fourth which is a backup reaction wheel. The

purpose of the reaction wheels is to store angular momentum of the spacecraft as well as to provide

attitude control.

The reaction wheels

are eight commands

below. [6]

receive commands from the flight software over the AACS databus. There

that are accepted by the reaction wheels. These are summarized in table 5.1

Table 5.1: Commands and responses for the Reaction Wheel Assembly
Command Response

Read Delta Angle Return the accumulated angle count, (including over (under) flow in-
dicator) and reset counter to zero.

Read Torque Return the current command torque setting for the RWA

Read RWA Current Return the current value of total RWA electrical current.

Read Motor Current Return the current value of RWA motor electrical current

Read Status Return the current operational status data of the RWA

Set Torque Hold the reaction torque output at the value specified in the command

Reset Set delta angle pulse counter to zero before resumption of counting,
and set torque command to zero. This response shall be automatically
executed at the time power to the RWA assembly is commanded on.

The reaction wheels utilize a brushless DC motor to spin the wheels and a hall effect tachometer

to sense the motion of the wheel. Twenty four magnets are attached to the reaction wheel and hall

devices sense the motion of these magnets pasta sensor. This sensor then is the tachometer which

increments by one each 1/24th of a revolution of the reaction wheel.
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5.2 Cassini  Laboratory Configuration

5.2.1 RWA Assembly Simulator

Description

As in the case of the IRU, the RWA assembly simulator consists or a remote terminal input output

unit for the RWA, software for the simulation, and an interface card that permits communication

between the two. The reaction wheel assembly simulation software is a C program that simulates

the dynamics of the reaction wheel for the purpose of calculating outputs to communicate with the

AFC via the RTIOU. The inputs to the program area torque command from the AFC and power

on/off commands. The program’s outputs are tachometer counts, wheel power, and a torque com-

mand wrap around. The program data flow consists of reading the power and torque commands,

propagating a three dimensional state vector consisting of the wheel position, rate and a time de-

pendent frictional term, and then computing the tachometer and power outputs for the AFC.

When the loop starts, the model reads a RAM register to determine if the AFC has commanded the

wheel to power on. If the wheel is off, the power state is set to zero and the state continues to prop-

agate. In that case, the model would simulate frictional spin down of the reaction wheel. If the

wheel power state is set to one, the model performs two more reads of the RAM registers to read

the torque enable command and the 2’s complement torque command.

The second step of the loop is to propagate the state of the system. This is performed by computing

the derivative of the state and then performing numerical integration to determine the actual state.

To determine the derivative of the state, the program first computes the total torque that will be
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applied to the wheel. This torque computation is shown in figure 5.1 and consists of four elements.
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Figure 5-1 Reaction Wheel Assembly Simulator Torque Computation

First, there is the commanded torque. This is converted from two’s complement to an equivalent

value in Newton Meter-seconds and compared against a maximum motor torque. If the command-

ed exceeds the maximum, the motor torque is set to the maximum, There is alsg an overspeed flag

that is set if the wheel is spinning too fast, If it is spinning too fast, the motor torque is set to zero.

The second element of the torque command is a term to account for commutation ripple. This

torque is due to the brushless DC motor and is sinusoidal in nature due to the switching of the DC

current windings.

The third component of the torque is the viscous friction which opposes wheel velocity and is de-

termined by multiplying the wheel rate by a constant. Finally, there is bearing friction to consider.

This torque is called Dahl friction based on the bearing model developed by P.R. Dahl. [ 1 ] This

model computes the time derivative of the friction and is integrated to determine the torque to ap-

ply. These four components are summed to determine the torque that will be applied to the wheel.
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Once the torque is known, the state derivative is calculated. This is accomplished by setting the

derivative of the position to the rate and the derivative of the rate to the torque divided by the wheel

inertia. The derivative of the Dahl friction term is calculated via Dahl’s model, These values are

then used in a 4th order Runga Kutta numerical integration algorithm to determine the state of the

system. The time step used in this routine in 0.0625 seconds.

Finally, the output is computed. This is performed by first calculating the power consumed by the

wheel based on the vendor’s power model and converting the power into a current. Next, the ta-

chometer data is computed. This simulation runs every 62.5 ms, but the tachometer data is read by

the flight software every 125 ms. Therefore, the tachometer output should reflect what the real ta-

chometer would say after 125 ms. This is accomplished by multiplying the current rate of the

wheel by 125 ms. This gives an estimate of the position of the wheel after 125 ms. Then, this is

multiplied by a scale factor representing the quantization  of the tachometer. This is then the output

of the tachometer. Since the output is a integer, the fractional value computed by this calculation

is saved and added to the next read. In this manner, no tachometer counts are lost. Finally, the

current, tachometer counts, and the torque command are sent to the RAM registers for transmission

through the RTIOU back to the AFC.

Validation Testing and Results

The reaction wheel assembly simulator was unit tested by performing the reaction wheel simula-

tion integration procedure in the lTL, CATS, and ALTO. This procedure contains power off and

power on tests to verify electrical interfaces between the AFC and the RWA simulators. The power

off section is performed with break out boxes in the loop to protect the hardware in the event of a

incorrect connection. The power on tests verify that the flight software can command the wheels

and that the reaction wheel simulation responds as expected. These tests were performed in the

ITL. and in CATS and no significant problems were found that would inhibit testing using the sim-

ulators.

A second set of tests was also performed. This set duplicated tests that were performed on the

flight equipment during stand alone testing. These tests were performed in CATS to allow for

comparison of simulator response and that of the actual hardware. The results of this test is shown
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in figures 5.2 and 5.3. Figure 5.4 shows the error between the two rate plots.
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Figure 5-4 Error between reaction wheel simulator and hardware

As is shown in the plots, particularly in the error plot, the simulator was able to track the hardware

quite well. The initial error is essentially a result of not being able to exactly reproduce the earlier

test. The hardware was tested in a stand alone environment, while the simulator was tested with

flight software active. As a result, the simulator test was subject to flight software constraints on

allowable wheel torques and rates. However, during wheel rate changes on the order of 500 radians

per second, the error was less than 10 radians per second. In addition, this error did not change

appreciably when the wheels were accelerating.

There are a number of important differences between the simulation and the real reaction wheels.

The first difference is the multiplexer that exists on the real wheel. This allows the flight software

to receive different measurements of reaction wheel current and voltage. However, flight software

is not designed to use any information other than the line current for the reaction wheels. Thus, the
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simulator only computes line current.

A second difference points to an important issue that was seen earlier with the IRU simulator. Nei-

ther of these simulators have any knowledge as to when the flight software is going to read the

RTIOU output. This means that information must be kept current at all times at the RTIOU output.

A consequence of this is seen in the way the output of the RWA was computed. The RWA routine

runs at 16 Hz, but the flight software reads the RTIOU of the RWA at 8 Hz. Thus, it would be

desirable to run the output routine at 8 Hz as well. The problem is th;t  if this is attempted, the sim-

ulator and the flight software diverge from each other and the result is incorrect output. “Old” in-

formation is kept at the RTIOU registers for too long and incorrect information is relayed to flight

software. This is why the output routine runs at 16 Hz and integrates the tachometer output as if it

was running at 8 Hz. This way, the simulator and the flight software will not diverge enough to

cause problems. In addition, the reaction wheel simulator will use the signal from the assembly

simulator card indicating a flight software read to prevent data corruption.

A third difference lies in the fact that the static ram that allows communication between the soft-

ware and the RTIOU uses the same registers for reading and writing, That is, the memory location

for reading information from a register is the same that is used to write information to that register.

This is a problem with register 5 of the RWA. This register is simultaneously the lower byte of the

tachometer data from the RWA simulator and the load mux command to the RWA. This means

that there is a chance, if the timing is unfortunate enough, for the RTIOU to read what it believes

is the lower byte of tachometer output, but is actually the old load mux control command from that

last cycle. This is a rare occurrence due to the faster processing time of the RWA simulator, but if

the processing takes excessively long or if flight software is quicker than usual, bad data could

reach the AFC. With the real RWA, read and write registers are separate, but this is not the case

with the simulator and thus this danger exists.

One of the most difficult features of the reaction wheels to simulate was the response of the reac-

tion wheel to a reset of its Remote Terminal on the AACS databus. A reset of the remote terminal

inputloutput  unit (RTIOU) can be occur one of three ways: the RTIOU can be commanded to reset,

it resets as a result of a power on, or the RTIOU can reset due to a timeout. A timeout occurs when

the RTIOU does not receive commanded for 250 ms. An RTIOU reset results in the reaction wheel

setting its torque command to zero until further instructions are received from flight software. This

prevents the reaction wheel from acting on an incorrect or obsolete torque command and spinning
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out of control. Furthermore, the reaction wheel hardware manager inside flight software expects

to read a zero torque value back from the reaction wheel and will not command the wheels until

this zero is received.

The problem with simulating this reset response is threefold. First, the static RAM card that allows

the reaction wheel simulation software and the RTIOU to communicate does not include a channel

to relay the RTIOU reset information to the reaction wheel assembly simulator. Therefore the soft-

ware had no direct knowledge of the RTIOU reset. Secondly, the static RAM uses the same mem-

ory locations as read and write registers. This means that if an RTIOU reset was detected falsely

and the software wrote a zero to the torque memory location, good torque commands would be

overwritten. The final difficulty is that the flight software and the reaction wheel simulator have

no knowledge of each others timing. A reset could occur anytime during the simulators processing

cycle and the software would have to somehow correctly write a torque command of zero when a

reset occurs.
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The first attempt to solve this problem is depicted in figure 5.5. The software nominally runs twice
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Figure 5-5 First attempt in solving remote terminal reset anomaly



as fast as the flight software, so the simulator should expect a new torque command every other

cycle. The first action is to read a new torque command and overwrite the RAM memory location

with a zero. Then the simulation continues using the read in torque command. It also copies the

command to a temporary buffer. The next cycle, the software expects a zero (which it wrote) since

no new update has occurred. If this is true, the software acts on the previous torque command that

was buffered and propagates the state again. Finally, the register is read a third time. If the zero

is still present, the software assumes that a reset has occurred since it did not receive a new update

and thus acts on the zero until a new update is received, when the cycle begins again.

This method did not work well. The software overrode the good torque commands with zeros in-

correctly and the simulator failed. This was caused by the fact that flight software timing is not

exact and synchronizing the simulator and flight software was too difficult in a real time environ-

ment. This can be seen be examine the following databus transactions

96-264/1 8:30:52.153 bm_d_rwx2 = 000eae0407074001004006 65 c096

96-264/1 8:30:52.235  bm_s_rwx2  = 00 100706ae09eOOOOOffOOOd91 65 c072

96-264/1 8:30:52.278  bm_d_rwx2  = 000eae0407074001004006 65 c096

96-264/1 8:30:52.360  bm_s_rwx2  = 00100706ae09eOOOOOffOOOd91  65 c072

96-264/1 8:30:52.403 bm_d_rwx2 = 000cae0407074001004006  66 c094

96-264/1 8:30:52.548  bm_s_rwx2 = 00 100706ae09eOOOOOffOOOe89 00 c093

96-264/1 8:30:52.590  bm_d_rwx2  = 000eae0407074001004006 00 cM]

96-264/1 8:30:52.673 bm_s_rwx2 = 00100706ae09eOOOOOffOOOd89 00 c08f

96-264/1 8:30:52.715 bm_d_rwx2  = 000eae0407074001004006  65 c096

96-264/1 8:30:52.860 bm_s_rwx2 = 00100706ae09eOOOOOffOOOe89 00 c093
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96-264/1 8:30:52.903 bm_d_rwx2  = 000eae0407074001004006 00 c061

96-264/1 8:30:52.985  bm_s_rwx2  = 00100706ae09eOOOOOff000d89 00 c08f

96-264/1 8:30:53.028 bm_d_rwx2 = 000eae0407074001004006  65 c096

96-264/1 8:30:53.110 bm_s_rw~x2  = 00 100706 ae09eOOOOOff000e9 1 65 c076

96-264/1 8:30:53.153 bm_d_rwx2 = 000eae0407074001004006 66 c094

This data is from testing on GMT day 96-264 in CATS. Data denoted at bm_s_rwx2 are source

bus packets for RWA2 (from RWA2) while those denoted as bm_d_rwx2 are destination bus pack-

ets for RWA2 (from the AFC). Appendix A has a complete RWA bus data decoder. the critical

information is decoded and explained below.

The first source packet contains a OX66 (denoted by the spacing before and after) which is the

torque command read back from the reaction wheel. (OX66 = 102 dn [dummy units]. This corre-

sponds to a torque of 0.14 Nm) The next destination packet writes a 65 to register 6 (the torque

register). This is acted upon and the RWA reports back a 65. This happens again with no incident.

But observe what happens at 18:30:52.403.  The flight software commands a torque of 66, but the

RWA is delayed in responding until 18:30:52.548.  Since the flight software commands a reading

from the reaction wheels about 4 ms before the bm_s_rwx2 data appears, this corresponds to a de-

lay between flight software commanding a torque and reading the reaction wheel of over 140 ms.

This delay results in the simulator reporting a zero as a read back, since the software believed an

RTIOU reset had occurred. Flight software responds by requesting a zero and verifying it reads

back a zero. This happens at 18:30:52.673 and thus flight software commands a torque of 0x65 to

resume processing. But again a delay occurs and the torque returns to zero. The simulator/flight

soft ware combination break this pattern at 18:30:53.028 and nominal operation continues.

Bases on this information, it was deemed essential to support as many as three simulation iterations

between flight software commands as well as to minimize the writing of zeros to the torque com-

mand. A new method was devised to met these additional requirements.
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This new method is shown in figure 5.6. This method uses the torque enable flag, which is set to
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Figure 5-6 Second attempt to solve Remote Terminal Reset Anomaly
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zero by the flight software each time a torque command is sent. The torque enable command is

monitored at the beginning of each iteration. If the torque enable command indicates new data has

been received, then the simulation accepts this data and resets the torque enable command. The

simulation then acts on this new data until 3 cycles without an update are complete. Then the sim-

ulation software sets the torque command to zero and acts on it as well. Thus the torque is set to

zero only if no updates are received for three cycles.

This method was much more successful and the results can be see in figure 5.7. The reaction wheel
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Figure 5-7 Successful restest of remote terminal reset anomaly

rates follow the idea rates computed by flight software very closely and the torque command re-

mained constant even in the presence of an RTIOU reset.

This modeling revealed an important consideration in real time simulation. It is critical that the
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simulated wheels have the same access to information that the hardware does. The reaction wheel

simulator does not have a reset line, nor does it have separate input and output registers. This lack

of information made the RTIOLJ reset response a much more difficult item to model. This is an

area for improvement for Cassini’s Reaction Wheel simulator. The presence of a torque enable

command was fortunate and allowed the software to model the reset response, but the software re-

sponse is difference from the real hardware because the software and the hardware have different

information available to them.
.

A final concern is the impact on fault injection. It has been decided that no fault injection would

be conducted in the ITL or CATS with the RWA simulators. This is due to the same decision that

impacted the fault injection of the IRU. Since no real command path exists to bias the tachometer

of a real wheel, no attempt will be made to do the same with the simulator. In addition, the timing

issues discussed above makes it impossible to guarantee that a particular flight software command

will generate a particular response, so injecting faults such as an incorrect torque readback during

a flight software cycle is not possible to simulate.

5.2.2 RWA Dynamics Model

Description

The reaction wheel dynamics model consists of a C program that is designed to simulate the reac-

tion wheels in order to generate torques to apply to the spacecraft dynamics model. The model

receives three pieces of information from the assembly simulator described in 5.2.1 above: the

commanded torque which is read back from the assembly simulator, the tachometer reading from

the assembly simulator and the time of the torque command read back. This information is used

to drive the dynamics model as shown in figure 5.8. The first step is a call to DARTS to compute

the angular rate of the modeled wheels. Once the rates are known, the model computes a rate error.

First, the time since the last calculation is computed from the timing information. Second, a rate

sample is calculated using the tachometer output and the elapsed time since the last calculation.

This rate sample is put through a low pass filter that combines the rate sample with a previous rate

estimate to obtain a new rate estimate. The purpose of this step is to limit the amount the rate es-

timate can jump in any one iteration. This rate estimate is then used with the rates of the DARTS

wheels to obtain the rate error.

Once the rate error is known, the model computes the torque to be applied to the simulated wheels
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inside DARTS. First, a correction torque is computed. This correction torque is a function of an

estimate of the drag torque and the rate error. The rate error is also used to compute the next value

of the drag torque estimate. Finally, the torque applied is computed by subtracting the correction

torque from the commanded torque.
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Figure 5-8 Reaction Wheel Dynamics Model Controller Block Diagram

Validation Testing and Results

To validate the model, conservation of angular momentum was invoked to develop predicts for the

simulated spacecraft rates as follows:

H = 16) (5.1)

‘ X X ,  S/C”X,S/C  = ‘re@relX (5.2)
lrw(i)rwlx

@x,s/c =  ] (5.3)

Where
Xx,slc

I ~x,sJc = Principle Moment of Inertia, X axis, Spacecraft

OX,SJC = Angular Velocity about X axis, Spacecraft

I~W = Moment of Inertia, Reaction Wheel
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~W = Angular Velocity, Reaction Wheel

1X= Direction Cosine transform from reaction wheel to Spacecraft

Therefore, the effect of a reaction wheel’s velocity on the spacecraft could be predicted, knowing

the moments of inertia of the spacecraft and reaction wheel, as well as the transform from reaction

wheel to spacecraft. The results of the testing was that after several coding errors were discovered

and fixed, the model did match analytical predicts to within 1 e-4 radians/second. Model Valida-

tion uncovered one particular feature of the real time simulation that almost prevented the dynam-

ical wheels from functioning before it was fixed. The problem was with the corruption of data

coming to the simulator from the blackboard. The simulator assumes that the data it receives is

valid and relies on this information to track the reaction wheels on the spacecraft side of the simu-

lation (real or simulator). This means, for example, if the timetags  used to detemline the new speed

of the spacecraft wheels are corrupted and the change in time is falsely computed to be extremely

small, the model will compute an unusually large rate estimate and attempt to torque the dynamics

wheel to match this incorrect rate estimate. This resulted in several problems that had to be cor-
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rected. For example, figures 5.9 and 5.10 shows data from GMT day 96-233 and 96-235 where
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the reaction wheels spun out of control and later recovered. Examination of the model software

revealed that this second order behavior would be possible if the software received a small change

in time estimate (used in the computation of the rate sample and the drag torque estimate). This

would result in a torque sent to the dynamics wheels that would be unrealistically large based on

the unrealistic speed and drag torque computed, and the rates would jump as shown. When the

next update was reasonable, however, the rates would decrease and the wheels would gradually be

brought under control. The response is second order due to the proportional plus integral controller

used in the dynamics model. To “correct this, a limiter was added to the drag torque estimate

(shown in figure 5.8). Filters were also added to the incoming tachometer and torque data, as well

as software to limit the change in time estimate to within 25 ms of the expected value. Initially,

the necessity of the limiter on the change in time estimate was not discovered and when the time
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is was not limited (and only the drag torque, torque and tachometer filters were activated), the error

became a first order response, shown in figure 5.11. This is because the drag torque filter limited

r——T~ I 1 I 1 I I I I 1

0.05

I

. . . . . . . . . -1

‘5
% -0.05 -
3(Li
A
o
% -0.1 -’
u
jj
3
9-0.15 -

6

-0.2 -

-0.25 -

. . . . . . . .

~ . . . . . . . ..~...... . . . . . . . . . . . ~~ ..: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f. . . . . . . . . . . . ~ ~ : -- 1...:...I
~ ~ ~ Obangrtx ~

. , . . . . . .. . . . . . . . . . ..~.~$ . . ..l ..  .  .  .  .  .  .  .  ..l
r:. . . . . .

r:

r::”::. . . . . . . . . . . . . . . . . . . . . . --:. -1

I
~__.._L_ I I I 1 I 1 I I I

8180 8190 8200 8210 8220 8230 8240 8250 8260 8270 8280
Time [see]

Figure 5-11 Reaction Wheel dynamics model first order anomaly

the integral controller, but not the proportional controller could still be in error if a large, incorrect

rate sample was computed. Once the change in time computation was limited, the model did be-

have as expected with no anomalous error responses.
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5.2.3 Closed Loop Simulation

A closed loop flow diagram is shown in figure 5.12. This configuration was used to rest the AACS
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Figure 5-12 Reaction Wheel Simulation closed loop diagram

during the operational modes (OPM) sequence testing. The OPM sequences test the reaction

wheels during a series of precision pointing maneuvers simulating science data gathering opera-

tions when Cassini  performs its orbital tour. The desired profile of the spacecraft angular rate is
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shown in Figure 5.13. The data was generated during flight software testing on the Flight Software
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Figure 5-13 RWA OPM Testing- Flight Software Development Station



Development Station (FSDS). The next figure, 5.14, shows the results from the testing in CATS
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Figure 5-14 RWA OPM Testing- CATS

on GMT day 96-237. The spacecraft is under reaction wheel control for the second part of the se-

quence. This section can be identified by the reduction in noise of the rate plots. The CATS tests

matches very closely with the FSDS run and the closed loop performance of the RWA simulator

and the dynamics model was verified.

An important lesson that was learned during the RWA closed loop testing is the value of simulators

when software is being tested. As the complexity of software grows, the chance that something

will operate incorrect] y grows as well. This is evident from several flight software tests when the

software reaction wheel manager was acting incorrectly and was sending torque commands to the

reaction wheels periodically. If these commands were sent to the real hardware, the results could
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have been very unfortunate ancl the hardware may have been damaged. Thus, the simulators

played a critical role in closed loop software testing as well.

5.3 Evaluation

The reaction wheel simulator is the most complicated software simulator due to its internal dynam-

ics and the importance of timing associated with it. Both functionally and in performance, the

RWA simulator closely matched the real hardware. The laboratories relied heavily on the simula-

tors during testing and they performed their functions well. Validation activities for the reaction

wheels revealed the problem of data corruption within the simulation. This problem was sur-

mounted by implementing filters on incoming reaction wheel data. The fact that the flight and sup-

poll equipment software do not talk to one another resulted in a difficult implementation of the

reaction wheel RTIOU reset response as well. However, even with these problems, the RWA sim-

ulator permitted effective testing of the AACS.
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Chapter 6

Conclusion

This thesis has investigated the use of simulators during the testing of Cassini’s AACS. The sim-

ulators have all met their requirements and testing in the three laboratories was improved through

the use of these simulators. There are several lessions  that have been learned during the testing

period.

The first lesson is the importance of clear requirements and objectives in simulation. For example,

the fact that the EGA simulators were never meant to simulate a leaded EGA led to the activation

of fault protection during ATLO testing. It was the misunderstanding of this fact that led to the

fault protection event. An example of clear requirement understanding is the IRIJ SHARC simu-

lator. It was clear from the beginning that “the support equipment software would not simulated the

actual BIT or software download. Since this was specified, testing of these functions was handled

elsewhere and this clear expectation led to effective testing.

A second lesson is that there is a tradeoff when deciding on additional command paths in simula-

tors. The Cassini  project decided not to add any additional command paths. The advantage of this

is that the simulators act just like the hardware in terms of how it interfaces with the support or

flight equipment. The disadvantage is that the ability of the tester to inject faults into the system

is compromised. The simulators could not be forced to report false information. For example, the

only way an IRU simulator could report bad data is if the dynamics simulation reported incorrect

data to the IRU. Thus the designer of a simulator must decide between increased ability to inject

faults and a simulator that is more like the actual flight equipment.

A final lession  that applies not only to these simulators but to the laboratory environment as a

whole is that in real time simulation, timing is everything. This was demonstrated with the RWA -

RTIOU reset response simualtion  as well as the data transfers between the aspects of the simula-

tors. Loss of data bween the RWA simulator and mode] caused testing failures and the biggest

problem with the support equipment software as a whole was data loss and corrupriton. Real time

simulation is a great asset and an indispensable tool, but care must be taken to preserve data integ-

rity to ensure consistent and reliable testing of subsystem hardware and software.
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Appendix A: Reaction Wheel Databus Transmission Decoding

In section 5.2.1, databus  transactions revealed difficulties in simulating the reaction wheel’s re-

sponse to a remote terminal reset. This appendix shows how that data was decoded.

All transmissions on the AACS databus are known as packets. Commands from the AACS Flight

Computer are denoted as reaction wheel destination packets since they come the AFC and the des-

tination is the reaction wheel, The designation for this packet is “bm_d_rwx2”. This stands for

bus monitor destination packet for reaction wheel electronics 2. There are two types of messages

that the AFC sends to the reaction wheel-- commands and requests for data. A typical command

packet is shown below. In the following explanations, a word is defined as four hexadecimal digits

and a byte as 2 hexadecimal digits.

bm_d_rwx2=OOOeae040707 400100400665 CO 96

The first four hexadecimal digits ( OOOe) are for support equipment processing and is not used by

either the AFC or the RWA. The second “word” consists of two parts. Oxae denotes the address

of the destination and stands for RWA2. 04 is a control byte that tells the RWA how to respond to

the command. In this instance, 04 simply means that the packet is a command and is coming from

the prime AFC. The third word tells the reaction wheel that the source was 07, which is AFC-A,

and the number of bytes in this message is 7.

The commands start with OX40. The OX40 is a command to write data to a remote terminal address.

Specifically, in this instance, it means to write one byte of data, starting at the address specified by

the next byte. So, the 040100 is decoded to mean write one byte of data, starting at address 01,

and that data is OXOO. Register 01 of the reaction wheel’s remote terminal is the torque enable com-

mand, so the AFC is enabling the RWA to accept the torque command.

The next command is similar. It reads4006 65. This means to write one byte of data to the reac-

tion wheel, starting at address 06, and that data is 0x65. This register is the torque command reg-

ister. It is this register that we observed to fluctuate unexpectedly during the RWA RTIOU reset

testing.
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The final bytes are CO and 96. The OXCO is a “no operation” command and is needed to expand the

packet to the correct length for the databus. The 96 is the checksum of the command,

A packet from the AFC to request data is similar to the command to write data:

bm_d_rwx2 = 0012 ae06070b 0002010300050006400400 10

The first three words have the same definitions as before. 0012 is used by the support equipment,

ae06 says the destination is the RWA2 and the command is from the prime AFC (OX06 has identical

meaning to 0x04), and 070b means the source is AFC-A and to expect 11 bytes in this packet (OxOb

= 11 decimal).

The first command is OXOO02. This means collect one byte of data from address 02 (read to load

RWA tachometer register). 0103 means collect two bytes starting at address 03 (upper and lower

bytes of the tachometer). 0005 and 0006 decode to collect one word from registers 5 and 6 respec-

tively (RWA line current and torque command wrap around). Finally, 040400 is a write of one

byte to address 04 and that byte of data is OXOO. The Ox 10 is the checksum.

The second type of packet on the databus is from the RWA. This is denoted as bm_s_rwx2, mean-

ing bus monitor source packet from reaction wheel electronics 2. A typical reply is shown below.

bm_s_rwx2 = 00100706 ae09 eOOOOO ff OOOe 9165 CO 76

Again, the first word is for the support equipment, the second denotes the destination as 0x07

(AFC-A) and this time the OX06 is ignored, since the packet is not from the bus controller (AFC-

A). ae09 decodes to mean the source is RWA2 and the number of bytes to expect is 9.

The first part of the reply is OxeOOOOO. In binary, this is three 1‘s followed by zeros. The three

ones denote this packet as a reply and the zeros indicated no errors in this reply. Next comes the

data in the order requested from the AFC. This packet was generated in response to the command

to request data that was decoded earlier, so here is the data requested from registers 02 (Oxff) ,03

(OXOO Oe) ,05 (OX91 ) and 06 (OX65). Again, register six contains the torque command wrap-

around that was observed to behave anomalously during testing. The CO is again the “no operation”

command and the 76 is the checksum.
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Appendix B: Source Code for software simulations

The following pages include the source code for the following models and simulations:

● Reaction Wheel Assembly Simulator

● Reaction Wheel Dynamics Model

● Engine Gimbal Actuator Dynamics Model .
● Inertial Reference Unit Assembly Simulator

● Intertial  Reference Unit Dynamics Model
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asm_iru.c

return (0) ;

!;

in:
ch. ec1<_stat13  s_register !board)

int board;

card [boardl  .pwr = read_ iru~ower ( ‘card !board!  .base_addr)  ;

cardboard] asse!’_?.?IOU_c  t–-;

if ( ( (card !boardl  .last_Dwr & C!X04)  == OXOC) && ( (cardboard] .uwr & 0x041 1. OXOO
)) {

/’ device just turned on send reset ‘ /
reset_board( ‘card !boardj .base_addr) ;

,,

if ((card !hmard!  .uwr & 0x04! == OxCO) (
card !boaud! assem_insync = O ;
cardboard; assem_RTI o,.,_ct = cardboard! F. TZOTJ_res eE_lim.  it;
card !boardl  consec~utive_re  cyc?es = G;

. . !

if ( ( (card{bnard~ last_pwr & OXOP) . . 0) && ((car d[board! .pwr & OXOP) 1= !?)) !
1 + AFC has started ax asse~~ly card transaction ‘/
car? !kmard: assem RTIoz_i P.t Q: = cardboard! aSSem_?.TIOU_c  E;
i: (cardboard) .a~sem_write_ok  .= 1) !

I + AFC transac?io  P. occ,urreci when writes no: inhihi:eti  + /
card !hoard!  .asse~_~Qss ible_@arity_ct.  + ;
checkpoint 2_card  [board! = card !board: ;

,;
);

if ( ( (card [board! las E_pwr & OxOR) 1= ?) && !(card!kmard]. pwr & Ox O:) == 0)) {
I* AFC has completec? an asse!nbly cars transaction ,/
checkpoint_ card Iboard; = cardboard! ;
if ( (cardboard! .assem_?.TIOV_ c? < cart i!!mard: P. TI0’2_l  Qc’<09Jc_\raluel  ‘

!card:board]  consecut  ive_recycles  > cardboard! consecut ive_recyc?es

f’
, if ~,e ha”e recycled, ie assem_!?TIO,J_Ct  is near

‘ ?. TIOU_rese  E_limit not C, do not rese: - ass,me we
‘ are in sync but cou~t comecu:ive  misses after
‘ limi~ resymc to signal
‘1

Cardboard) .assern R.!:o, v Cz = card [board!  .R. TI O’., rese5_limic;— — —
cardboard! consecu  Ei\re_recycles  = O;

) else {
cardboard] consec~~t  ive_recycles++,

);

card [boardj assem_insync . 1 ;
cardboard] assen_write_clOne  = O ; /+ allow another write

‘ at proper  time  ● I
card ~boarc!) assem._in  E_ac5ive++  ;

);

card [board] last~wr  . cardboard; pwr;

if (card[ board] assem_F.TIOL,_c  E < card !board) RTIOL~_recyc  le_val,Je) /
/“
‘ either in Eerr,Jpts are of:, or assem card no: read, reset

+ counter and disable interrupt
“/

cardboard! assem_F. TIO’.’_ct  = card.[  board! ?. T15T.’_re  se E_lim it;
card [boardl assem_smc  loss _cE++;
card [boardl assem_write_done = O; /’ allow another write

● at proper time ‘/
/“ card! boardl .assem_inswc = O; ‘/
/’ pcke~ (*card [board! .base_addr + 0x8006 + 1, Oxee! ; ‘/

);

if ( (cardboard) assem_RTIOU_ct  > card [board] .RTIOC_inEerrup  Z_enable–val)Je)

(card [board] .assem–RTIOU_ct  < card [board] .~.TIO~_lockout_\’a  lJJe)  ‘ I
(card [boarJil .assem–write_done  ‘= O) ‘ ~
(card [board] assem–inswc == 0) ) {

card[boardl  .assem_write_ok  = 0; 1+ inhibit writes ‘1
} else {

cardboard! .assem_write_ok  = 1; /+ enable  writes ‘/
1;

return O;
);

in:
check_ iru_status_reg  ister ! )

ir,l~wr ! C ! = read_ ir,J_power  ( assem_ir,ua ) ;
iru~wr ! 1 ) = read_ irumower (assem_ir,Jb)  ;

if (((~a~t ir\J@~,r~@)  & ~x~8) .= ()) && ((ir,J=w,r  [O! & Ox OS) ,. O)) {

/’ AFC has started an assemb?y card transaction “1
asseP._2r,2a_?.  TTGIJ_l  Et ~~. = assem_irJa_F.uI  OU_ct :
if (assem_irua_wr  ite_Ok == 1! (

/‘ A.~C trar. sactio~.  occurre?  w,he~ ,., rites not inhibited ‘/
assem_irua_possi  ble_parity_ct  ~.;

!;
).,, ,

if !((last_iruQwr  [O] & 0x08) 1= 0) &k (liruJwr!O:  & 0x08) == C)) 1
/’ AFC has completeti an assembly card Transaction ‘/
assem_i rua_.RTIOT.’_ct  =lru_?.TIOL’_res et_li!n:t;
assem._i r~la_insync . 1 ;
asse~_i rua_int_active*+  ;

];

if ( ( (las E_iruQw,r!l; & OX08) == 0! && ((ir” D,*,r[l) & OxO’?) 1= 0!) !—
/+ AFC has started an assembly card Transaction. ‘/
assem_i rub_ RTIOLr_int~t  = assem_i rub_ P.? TOL7_ct;
i! !assem_i  r,Jh_wri Ce_Ok == 1! {

/‘ AFC transaction occurred when writes not inhib:teti ‘ /
assem_i rub>oss ibLeSarity..ct++;

);
~;

if ( f (las:_irluQwr [l! & OXOB) ‘= Q) && ((iru_uwr [l) & OXD2) . . 0)) {
/’ AFC has completed an assembly carti transaction ‘/
assem_i  r!u5_R. TIOU_ct = iru_RTT012_reser_?  imit;
assem_irub_insync  = 1 ;
assem_i rub_int_active++;

);

las E_iru@wr [O! = im~wr!!ll ;
last _iruQwr  [l! . iru~wr!l] ;



II asm_iru.c
if ( assem_i  r,Ja_F.TIOT.T_c E–– < iru_F.TT OL7_recycle_value ) (

/’
● either inrermpcs are off, or assen card not xead, reset
“ counter and disable ir.terr,upt
“1

assem_i r,Ja_?.’TIOLT_ct  = ir,J_F. TIOLT_reset_l  imit;
assem_i rua_syncl Oss_ct++;
/‘ a.5sem_irua_insync  = 0; ‘1
/’ p0ke8 (assem_ir,Ja  + 0x8005 + 1, Oxee) ; ‘/

);
i f ( assem._i r~Jb_?.TZO1.’_c  t-– z ir,J_P.  TIOr.7_c  ecycle_..,al~ae  ) !

/’
‘ either interrupts are off, or assen card not read, reset
● councer and disable interrupt
‘/

~SSen_iI.J~  p.TIo~.l_cE  = ir,J_?. TIOr.T_rese E_~ imit;—
assem_i rub_syncloss_ct  ++;
/ ● assem_irub_insync  = 0; ‘/
/“ pokeB(assem_irub  + 0x?OQ5 + l, Oxee! ; ‘/

1;

:< ( ( assem_irua_?.TT  OU_c E > iru_P.TTOU_inEerr,JpC_  enable_\ralJe ) ‘. .
(assem_i rua_?.TI@lcE < irlJ_p. TIOrdl_?  ock0,2E_x,alue  ) ‘
!assem_irua_inswc == C) ) {

as*ep,_ir]Ja_wr iEe_o!<  = O; /’ inhibit writes ‘/
) else !

assem_ir,Ja_wri  te_O!< . 1 ; /’ exable writes ‘1
);

i f ~ ( assem_i r~db_F. TZC’J_ct > ir,J_F.TIOLT_ inter r,Jpt_enab le_val,Je  )
( assem_i r,Jb_F. TIOL,_c E < iru_uTI OL,_lock.  O,Jc_J,alue ) ,(

(assem_irub_inswc == C \ ) ~
assem_i rub_wrice_o:k  . c ; /- inhibit writes ‘I

! else {
asse9_i r,2b_write_0;<  = ? ; /+ enable writes ‘/

);

return O ;
);

inn
in._in Eegrat Or ( )
{

i.nt ~,j:

for (i = O; i < 6; i++) (
check_ status _register ! i ) ;

}:

tru_1924_.\ z_c,yc  Le+. ;
iru_1024_hz_cycle  . iru_1024_hz_cycle  & Ox O!20003ff;

if (iru_cycle_array !iru_1024_hz_cy cle! ‘ = 0) {
iru_channel = (iru_channel + 1) & OXOOOOOD03;
iru_s  im ( iru_channel ) ;

} else {
if (irJJ_channe  L == 3) { /’. safe :0 pick w dynamics rates “’/

Eor (i = 0; i < 2; i++) !
if !dw_rate_avail  [i! 1= c) (

);
);

for (j = o; j < 4: j++) {
ang~J. ar_ra Ee[ i! !jl = dw_iru_rate!i!  [j! ;

);
dyr_race_avail [i] = O;

);

in:

iru_sum_angle  ( id, i )
int id;

double angle_ rate;
unsigned short int time;

if (~ == n! {., /++ time ad sat. bits are synced  50 star: 0! ,Jpdate
cycle “’/

iru_ayrosatr  [id] = OXOO; I*’ clear saE,Jration  bits ‘*/
time = update_ time (id) ;
iru_timetag  O [id’ = time & GxOC )55:
iru_timetagl  !id! = time >> 8;

angle_rate = angular _rate[idl  [i] ;

/“

“ if ang,Jlar  rate exceeds 15 deqlsec  se? coorspon6ing
● + gyro saturation bit
. . .

if (fa~s  (angle_  rate)  > !scaled_iru_gyro_  sat_limit) ) !
if (id . . 01 (

.’im_ayr_s5ra ++;
~ else {

~Tim_gyr_strb+  + ;

iru_gyrosatr[~dj  = iru_gyrosatr~idl  1 gyro_ sat_mask!i!  ;
DEanqle!idl!i;  = O. C!; i“+ set integrated angle to ~ ‘,1
iru_gyrosatr_de lay {id) :i~ . iru_qyrosatr_de  lay_ Cime;
trap_ ang,Jlar_rate_a  = angular_rate  ! id! [0 ) :
Erap_anq,J  lar_ra  Ee_b = anuular_rate [ id! !1 ] ;
trap _angula r_race_c = a~. uuiar_ra Ee ! id! [2 ! ;
crap _ang,Jla r_rate_d = anq,ular_ra  ze !idl [3 1 ;
trap_i . i ;
trap_mask = ir,J_gyrosa  Er[idl ;
trap_ angle_ra  te = angle_ rate;

) else (
if ( (--iru_gyrosatr_ delay ~id) ~i; ) <= O) {

iru_ayrosatr_de  lay ’id! ‘i! = 0;
/’+ apply cycle delta time and scale factor “1
~~ana~e[id]  [i] += (an91e_raEe  ● irJ_cycie_ti Te_sf ) ;
if (DEangle!  id! [i! >= iru_rollover)  {

T3Eangle! id! [il -= ir,l_rol Lover;
} else f

if (DEanQ~e[idj [ij <= -iru_roll Over) f

~Eangle!idj  !i! += ir)J_r 011 Over;

} else { /.. keep  .Sa  E f~ag condition ~until  timer expires ‘~/

ir,J_ayr Osatr! id! . iru_qyrosatr  [id! 1 gyro_ sat_nask [ i? ;
DEangle!id)!i!  = 0.0; /++ set integrated angle to O ..1

,,
);
if ( (irJ_noise_on != O) && ( (iru_gyrosatr [id) & gyro_ sat_mask!i) ) == !3) )

Eangle  [id! !il = (T3Eangle [id! !i! + ir,J_.n Oise (id) ) / ir,J_angle_s5;
else

,
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Eangle!idl [i) = DEangle! id! !i] / iru_angle_sf;

if (id  =. 0) {

switch (i) {

case O:
gyroA_angle_AO  = Sanqle!idj [0) & OxOOOOOOff;
gyroA_angle_Al  = (Eangle!id~  !o~ >> 8) & OX OOOOOCff:
gyroA_angle_A2  = (Eangle!idl  [0) >> 16) & Ox OOOOOOff;
break;

case 1:
gyroA_anule_BO  = Eanale[idl [1! & OxOOOOOOff;
qyroA_angle_Bl  = (Eanqle [id] [1! >> 8) & OxOOOOOOff;
gyroA_angle_B2  = (Eang Le [id] [1) >> 15) & Ox900000ff;
break:

,,
case 2:

gyroA_anqle_CC  = Eangie[id~ [2? & OX OOOOOOff;
gyroA_ang; e_C: = (Sang le [id] [2] >> 8) & OX J290e90Ef;
gYr@A_aw~e-C2  = ~Eangle  !id! [2; >> 16) & Oxoccoooff;
break.;

1,,

!;

case 3 :
gyro’2_angle_D0  = Eangle [id! [3! & Ox OOOOOOff;
gyr09_angle_Dl  = (Eangle!icij  !3~ >> 8) & 0x0000 pOf5;
gyro9_angle_D2  = (Eangle! id! [3; “>> 16) & OxOOOOOOff;
break;

?;

);

);

int
ir,J_sim  ( Ear9et_channel  )

~n~ targe E_charmel; /“ C=chan A, I=chan B, 2.than C, 3.than D ‘
‘/
{

int i;
int sft R.st:2]  ; /“ Soft ?ieset  Fu~ctioz  code ,* I
/“in< angular_ race [2! !4) ; ● */
/’” i ru_mode, O = power 055 Co on transition,

~= power t~xne~  or? - tioinq BIT L sec ti~er,
2 = wait for download to comple:e,

(peekP!assem_ir,ua  + !Ox92 << 1) + 1) 1= OxOO)
(peek8(assem_irua  + (C!XR3 << 1) + 1) 1= OXOO)
!peek.8! assem_ir,Ja  + (CXP4 << 1) + 1) 1. 2xOO)
(peek P(assem_ir,ua  + (ox95 << 1) + 1) ,= OXOO)
(peek8(assem_ir,Ja  + (ox85 << !) . :) += OxOg) ) J

/’ die? not pass reset packet test ,/

S?:?. S: :5: = e;
);

sft R.st:l) = peek9fassen_ir,~b  ~ (CX?E << :) + 1) ;

if !(sf:?. st!l? 1= ~x~3) ,’
(peekR(assem_irub  + (Ox!?! << 1) + 1) ‘= Ox CO)
(peekE(assem_iruh  A !OXR2 << 1 + 1) .(= OXOC)
(peek.s(assem_irub  . (5X93 << 11 . l\ ,= cxeo\
(pee!< ’2(assem_irub  ~ (9x’?4 << 11 + 1) ‘= OXOO)
(peek8(assem_irub  + (ox85 << 1) + 1! (= OX DO)
(peekR(assem_irub  + (OXS5 << 1) A 1) ‘= OXOO) 1 f

/* did not pass reset packet test ● I
sf~p,~~[l~  = Q;

);

ze iru data ‘-1
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iru_timer  ! i !  .  iru_91T_C  ime; I “ counts down to zero

update status only ‘+/
iru_mode  [i! = ;;
break;

irlJ_r: iOu_write  (i, 15, force_wri  Ee)  ;
,+.

,, /
sOft_reseE_flaa!i!  = 1;

if !dw_!d_done  [i! == OxOf) { /“ download

II case 1: l’” 1 seconcl BIT timer “/ complete “1
if (iru_Eimer [i) > 0) {

>r,J_Eimer[ij ––;
} else ( /“” timer expired ‘*I ete  ● +1

iru_mode [i] = 4;
? else ! /“ check for Sov.m?oati CCPPL

iru_mode [i] = 2;
};

);
break;

bit_dnld!i) . 0x30; /’ B!? Cmnple:e  ● I
iru_gyrOsa Er [i] = OXOO;
bit_crnt!i! = 500 / 15.625;
dv.~._ld_done [ i ] = 0x05;
ir,J_rt iou_write  (i, 15, fOrce_write)  ; / +‘ upda case 4: l“ normal opera ~ion “/

ir,J_mode !i] = 2 ;
); q?es ~+/
break;

/+’ check for soft reset first before  calc~ulating  an

ir~J_reset(i) ;
iru_rti012_writef  i, 31, fOrce_wri!el ; /.+/“ check for soft reset . . .

,upda:e all ,*/
if (S f:!lst!i! == 0x03) ! /’” soft reset just occu

counts down to zero “ I

irlJ_rese E!i) ;
iru_rti Ou write (i, 31, force WY~Fe)_.. - , / +‘ Jpc?a—

ir~J_timer  ! i: = ir1u_s0f5_rese  E_5 ime; /“
rrec? ‘,/

I
te all ‘“/

ES down to Ze~O  “/

p~ete “/

. . .

ir~u mode!i! = 3;—
) else {

i ru_s,Jm_angle  ( i , 5arget_channel  ! ;
if ( targe5_channel == 3 ) !

/“ write to iru after all angles co
.nmlete  ‘ ‘ fir)l_m  Ode ! i ! = 3 ;

‘ else !

!;

iru_mode!i! . 4;
! else ( /‘ ● check for download  corrple?e

break;
);

};
if (irJ_mode~i~  (. 1) !

card [i;. assem_inspc  = O ;
ir,J_download(  i ) ;

1;

?:
break;

!;

c a s e  3;l*e sof? reset delay 1 second timer ● +1

if (iru_timer!i; > 0) !
iru_tiner [i]--;

! else { /++ timer expired ~~1

/“
,, this preven~s  a contino)us  so ftresec

“+ by writing  over the function code
● *,

F’uncCodeA . peek R (assem_irua  + (OXPO <~ 1) + 1) ;
) ;

);

!; if (F,JncCodeA  == CX09) !
MspaceA = peek8 (assem_irua  + (f3x0!2  << 1) + 5) ;
if (MspaceA == OXOO) !

/’ OXOO space GSP p-space ‘ /
bit_dnld  [id! = bit_dnld!idj  ~ OXCO;
poke8(assem_irua + (Ox2e << 1) + 1, bit_dnld!idj ! ;
1’ chksum on p-space good + 1

if (i == 1) {

poke8 (assem_ir,~b + (OX80 << 1) + 1, Oxff
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dvn_ld_done  [ id! = dwr_ld_c20ne [ id! I ox~3 ;

};

,,

if (MspaceA  == OXIO) {
/’ OXOO space d-space + /
biE_dnld[id]  . bit_dnld!idj ‘ OXOC;
poke8 (assem_irlJa + (Ox2e << 1) + 1, bit_dnld [id] ) ;
/+ chks~xr on d-space good + /
dwr_ld_done  [ id! . d.,w_id_done [ idj 1 OXOC;

!;

!;

?;
,,

if ((id == 1) && (fake_ download f= 1)1 f

,,

II

II

Func Code B = peek F (assem_ir~Jb + (OXPO << 1) . 1) ;

if (Fix.cC0de2 == 0x09 ) {
Wpace B = peek8 (assem_ir,Jb  . (C!XSC << 1 ) + 5 ) ;
if (YspaceB  == OXOO) !

/’ Ox09 space GSP p-space  +/

bit_dnld  Eid! . bi5_dnld:ici; I OXCO;
po’<e8 (assem_iruh + (Ox2e << 1) + 1, bit_&nld [id] ) ;
/ ● chksm on p-space good  ● /
c!wm_ld_done r id: = ch.m_ld_d@ne [ id! 0x03 ;

);

1.,

i: ( fake_download  == L) {
bit_dnld! id! = Oxfc;
ir~J_da Ravalid! id: . Oxbc;
ciwr_12_done  !ic??  . !?xc5 ;

};

I in:

run_as  sem ( )
{

I r%,a_loop  ( ) ;
ret,urn 0;

)
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Irxiexing: [ (+Y F’.EA/+X EGA) , ( (+Y REA/-X EGA) , (-Y ?. EA/+X SGA) , (-Y P. EA/-X
EGA ) )

No:e that within  the CA!3 documentation, the +Y ?.EA is designate? as the A WA
and Ehe -Y WA is designated as the B WA. Additionally, the +X EGA is
designated as EGAPA, while the -X EGA is designated as EGAQA.

mel_u_vec: lL,ni~ vec~~r Of +Y ME ~hp-Is~  in ~lc ~OO~ds me2_u_”ec  ! Lyn i t
vector of –Y ?lE thrust in SIC coords

+/

void
ega_mode> ( eqa_ext_c Om, lv2t_D0s_est,  mel_)2_\,ec, me2_u_vec )

d_rea 1 ega_ext_com [ ] , lvdE_nos_est  [ ] , mel_u_vec  [ ) , me2_u_vec [ ! ;

ega_ex:_c Om comma>ded  extensions l~,dE~os_est  Lv6: extensions

me 1 _TJ_v  e c main engine vectors me2_u_x, ec

d_rea 1 cie?ta;
in: i;

I ‘ check Lvdt data ~ /
for (i = 0; i < 2; i++) {

if ( fabs ! i@t~Os_est ~i ‘ 2 - 0! - ega_c,urr_ext  [i
2ua_max delta )

)
if (e9a_0n0f!_b)  {

1’ update state per command -- limit if necessary: ‘/
for (i = 0; i < 2; i+. ) {

ega_ext_c On ! i + 2 + 1! = ega_exE_con[i  ‘ 2 + 1! ‘ .!)0027245;
lvdt~os_est(i  + 2 + 1] = lvci_Dos_est!i  ‘ 2 + 1) ● . 00027245;
delta = ega_ext_com[i  ‘ 2 + 1! - ega_curr_ext  [i + 2 + 1 j ;
if (delta > ega_nax_delta)

ega_curr_ext [ i ‘ 2 + 11 += ega_max_del ta;
~ISe if (delta < -ega_max–delta)

ega_curr_ext  [ i “ 2 + 1 ) –. ega_max_del  la;

ega_c,urr_ex:  ! i ● 2 + 1? . ega_ext_c Om li
1

/‘ check lvdt data ‘1
fOr(i=O; i <2; i++)r

if { fab~ ( l“dtQOs_est [i , 2 + 1! - e9a–curr_ext

> ndlvd~  ● ega_max_delta  )

ega_cuzr_ex  E ! i ‘ 2 + 11 = lvdC_Dos_est [
)

LTLL) !

);

)

/’ kinematics “1
ega_kinematics (mel_u_Vec,  me2–u–Vec ) ;

1“ Diagnostics ‘/
if (model == 3 kk dia?_ci3e–  - > O) 1

if (diag_flag  == O) (

+2+1];

if ( (f_ega = fopen(’’  /si Empmega_diaqs”, ”, “w”) ) == (~IL~  ● 1 ~

printf ( “File Open Load Fai,~re for EGA diaanos Eics\n”

);
diag_flag  = !;

);

i: {diag_le.Jel  . . 2 ‘ diau_!evel  == 3) {

;;
!;
if (diag_level  =. 3) !

if (f_ega == (FILE  ● ) \’ULL~  f
prinE5( ’’\n Internals: curr ext: %12.5f %12.6f %12.5!

%L2.6f\n onoff a ’336 onoff b: %3d\n’< , ega_curr_ext  !0! , ega_c~Jrr_ext [ 1 ! , e—
aa_curr_ext !2 ] , eaa_curr_ex5  [ 3 ! , ega_On Of f_a, ega_OnOf f_b) ;

! else {
fprintf  ( f_ega, “\n Internals:  curr ex~: %12.5! %12.6f

%12.6! %12. 6f\n ono5f_a  %3d onof: b: ‘%3d\n” , eua_curr_ext  !0 ) , ega_curT_e
XE m! , ega_curr_ext :2 I , ega_curr_ext [3 ! , ega_onoff_a,  ega_onoff_b)  ;

!;
);
if (f_ega == (FI!JE  ● ) NULL) (

print f(,HEnd of Cyc Le. bb_timetag  = %f\n\n”  , bb_timeEag) ;
) else {

fPrin Ef(f_ega,  ,, End of cycle. bb_timetag  = %f\n\n” , bb_tine
tag) ;

else
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!;
if (diaq_Eime . . 0 && model == 3) {

diag_flag  . 1;
if ( f_ega ,= (FILE  ● ) WJL,L) {

if (fcl Ose(f_ega) ‘= O) !

p~intf ( “Error closing Engine Gimbal Debug FiLe \n,, ) ;
};

);

~~ (diag_time < @ && mOde~ ‘= 3)

diaqtime  = 0:
1

“Jo i c?
ega_!kinem.atics (mel_12_vec,  me2_u_vec )

d_rea 1 me?_u_vec r 1 , me2_u_vec  ! J ;
[

In ,

!;

#if O

#endi f

l“
‘ local:.
+ extc (2)
‘ ext_err ( 2 )
, angle_ s:ep(2 )
‘ big_g(2 ,2)
‘ ang; e(2)
‘ raEe (2)
, accel (2)
‘ exE (2)
+ exE_dot (2 I
● ex?_tiOt_tio:  (2 1
. mte~.p!  2,3!
, lin~,ap(2  ,2! and v5e-p~2\
.~,j,~

+ con~,ergence
‘ co~ur.ter
‘ c:, C2, s:, C2
●  ?2162
‘ geon
, me_str
+/

“calculated” normalized extensions
norrnalizec? extension error
newton step
ma~rices  of partials

gimbal anales
O,JEPU: gimbai rates (rad/s)
O,JIPUE gimbal accels (rad/ s/s)
.n. onna lized extensions
normalized extension rates
normalized exte?sion accels
tenporary  matrix
temporary x,ectors
rnisc Cnllnzers
convergence  flag
coun~er  for new~on i:eratio.ns
trig fur. ct ions
trans matrix
thr,Jst unit vector in. enaine  coords
Cemp Erans formati on ma,

d_real extc! 2!, exc_err  !2 ) , anq Le_scept2?

cl, C2, s:, 52, georl !?!;

d_rea 1 bia_g!2! !2; , mtemp!2! !3?, lCnmap!2

in: rea, i, j, convergence, counter;

/ ‘ ?.E.A loop - thrust vector  for each .Q.  EA ‘/
for (rea = O; rea < 2; rea++) {

rix

angle ‘2 ; , ext !2 ! , ext_err_nO

I ‘ decompose extension data and nor~alize ‘i

for (i = 0; i < 2; i++)  r

ext[i~ . eaa_curr_ex  E [rea ‘ 2 + i ! / e9a_null_len.gt!l;

ext [i! = ega_curr_ext  ! i ‘ 2 . rea! / ega_null_lena  Eh;

!(

,.,22) (

1
12s01ve(limnap,  ext, angle)  ;

/ + new?on loop ‘1
convergence = O;
counter = O;
while (convergence == C ) (

i f (counter > e9a_counter–~ax )I
)+’

printf ( “aaaaackl

● ☛✌

convergence = 1;
)

(

ega model : kinem.acics bar fed” !

/+ calculate extensio~ and matrix of partials  ‘1
ega_extens  ion (anale, ex:c, blg_g, rea) ;

I” evaluate extensio~  error ‘1
EOr (i = O; i < 2; i++) !

ext_err!i! = ext!i! - ex~c [i!;
1

eXt_err_nOm  . sqrt (p Ow(ex E_err [01 , 2 ) +
pOw(ext_err!l!,  2.)):

/ ● test coxverge~ce  ‘ I
if (ex:_err_nQrm  . ega_err_:ol  ! !

converge~ce  = 1;
]

if (conwwence  == C! !
/+ solve for newton s!ep ‘1
12s01ve(bia_g, ext_err, angle_ step~ ;

co,un:er = coup.:er . 1 ;

if (model == 3 && diag_tlme  > 0 LL d~ag_level  == 3 && diag_flag == C,

!;

t



/ ● co!wute ME :hrus: unit vector  criven  sol,ution  for anales ‘1

geOm!O!  = O.G;
geom!ll = 0.0;
geOrn  [2! = –1.0;

!
1 / + end of rea loop ‘/

/ ’

+ In, angle!2) : engine gimbal angles (rad)
.
.

/’”
“ local.
●

‘ s: sin of angle(l) c1 Cos
‘ of angle(l) S2 sin of angle(2) C2 os 0:
‘ angle(2)
,

● alpha(2) intermec?i ate 9(2,2) a~pha
‘ derivatives h(2r 2,2) second alpha derivatives
,

●  stempl->2 temporary .sca; ars vteropl (3) ary vector
● mtempl->4  (3,3) temporary matrices pmi (2,3) _~oin.  t -
‘ u_j Oint gam~a (3, 3) identity minus rotation matrix
‘ ganmat (3,3) gamma transpose dgamma (2 , 3, 3 ) erivative  of
“ gamma dganunat  (2,3,3) dganuna  Eranspose i, j , k
“ isc counters
● I

ega_model.c

ganuia_l Ocal[Ol  [1! = –s1 ‘ s2;
gama_l Ocal [O] [2] = c1 * 52;
qanuna_l Ocal!ll [01 = 0.;
gama_l Ocal!ll [11 = 1. - cl;
gama_l  Ocal!ll !2! = -s1;
gama_10cal!21  [0! = -s2:
gama_10cal!2;  [1! = s! + c2;
~ama_joca~:21:2:  . ~, - cl ● =2;

/’ extensions “/
for (i = D; i < 2; i++) !

ext [i] = sqrt (:. + 2. , alpha [i!) - 1.;

/’ calculate derivative matrices “1

/’ get  5 “1
for (j =O:j<2; j++)!

Eranspose_33mat  (dgarmat ! j ] , dganuna ! j ; ) ,
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sens_rate  !0!
sens_ra Ee!l!
sens_ra Ee~2:
sens_rate  [31
sens_rate  [41
sens_ra Ee [51
sens_ra5e  [61
sens_rate!7!

= do53 (rate, gyrO_sens_al ) ;
= dot3 (rate, gyr0_sens_a2 ) ;
= dot3 (raze, gyro_ sens_a3  1 ;
= dot3 (rate, qyr0_sens_a4 ) ;
= dot3 (rate, gyro_ sens_bl ) ;
= d0t3 (ra:e, gyr0_sens_b2 ) ;
= dot3 (rate, gyro_ sens_b3  ) ;
= dots (race, gyro_ sens_b4 ! ;

! else (
fprincf  ( f_gyro,

‘%12.5! n<<, sens_rate’  ij , czJan E_re.-, ainder !i ! ! ;
“ sens_rate %12.6! quant_7ena inde~

,, ,
);
if (f_9yr0  == (FILE .) >TL, LLI !

printf(  “\n End of Cycle.
I else {

bktimetaa  = %f\n\n’”, bktimetag! :

I* Loss Less quan: ‘1
for (i = 0; i < 9; i++)  {

qyr O_bias_real  = sens_rate  ! i ! / gyro_ rate_quant
+ quant_remainder  [i; ;

quant_remainder  [ i } . nodf (gyro_bias_real , &gyr O_bias_wh OLe) ;
gyro_bias [ij = ( in:! ayro_bias_whole;

]

/+ overwrite wi?h zeros if 055 ‘f
i f ( 1 gyrO_Onoff_a )

fOr (i = O; i < 4; i++)
qyr O_bias !i: = !2;

i f ( t gyrO_OnOff_b )
f~r (i = 4; ~<p;~++)

gyr O_hias !i! = 0;

/’ Diagnostics ‘f

if (model .= 4 && diag_E ime -- > 0) !
if (diag_flag == 0) !

if ( ~5_qyr0 = fopen! ‘(lsirn. /? P?/gyr0_dia2s” , “,*.”) ) == (FILE

);

! else

!printf ( f_gyrO, ,4 Gyr09iases:  \n” ) :

for (i = !):  i < ‘E;  i++)  (

fprinRf(5_gyro,  “%12. 5d\n”,  gyro_bias !i! ) ;

);
,.

,, ;
furintf ( f_gyr O, “ \P. ” ! :

2 ‘ diag_level  == 3) !

! else !
fpr~*:f ( f_qyro,  ,,p.ates %12.5: ‘%:2  .Ijf ‘i?2.55\n\w’, rate!

~~, rate !l), raCe [2! ) ;

me:aa) ;
fprintf ( f_ayr O, “\n End of Cycle. bb_timetag = ~f\n\n”  , bb_Ci

if (cliag_Eime  == O && model == 4! !
diag_flag = O;
if (f_gyro  1 = (FILE ‘) ?WLL) I

if (fcl Ose(f_ayrO~  ‘= 0) !
prir. tff ‘> Err@r closing  Gyroscope !liagnos  tic File! \r. ” )

);
);

1;
if (6iag_tip,  e < 0 && model == 41

6iag_ti Fe = O ;
);

., ;
);
if (diag_level == 3) (

if ~f_gyro  .= (~~~~ .) NULL! !

for (i = 0; i . R; I++! !
print f(’’sens_rate %12,5:

f \n ,’,
quant_remainder  %12 .6

sens_ra5e  [i! , want_ remainder  [i ! ) ;
)
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/ “9 DESCRIF’’TZOY
SId: rw. c,v 1.27 1997/ 0?/27  23:02:53 itsl  EXP  S
This  file contaim  the simulation for Che CASSI?JZ reaction wheels for use
in the Integration and Test Laboratory.
● *,

/’+ F. WISION HISTORY:
23 June 95: Jason Bunn Creati03

5 July, Jason Bunn Z.nitial  Wve; opmen E
~Ta son SUrm Added Power Model and Integration Coefficients
Jason Wnn Began adding interface modules
.Tason  .SUrm delivered code to .-. Roberts for integration
Recent Updates :
‘Tachometer !.fodel Corrected
Bugs fixed to facilitate Integration
Expancied  to fo,ur reac~ion  wheels
96: Changed to new power model

chaage? tachometer :,u>ction  declaration  !0 short
Changed derivation of scale factor from ,1755 /12Q lo .1755 /127

96: Code2 s,., itch from cQpies to arrays

/ ‘* OPEFATTW,
At the start of a loop, che sir=ul at ion checks to see if power is on. If, so
the commanded :orgue is read and added to the state. 15 not, the commanded
Corgue register is not read. ‘&hen power is first s,upplied,  the registers are
cleared to zero. The state is then propagated in time, followed
by an output .sta Ee where Ehe current state variables of interest are passed
to the registers. The regis:er file communicates with tb.e RTIOL’ and passes
the data to the AACS bus :hrough t. e . .h Qm70Y when necessary. >00-DS  OCC~JI

every  62.5 ms.
,.,

*include <math. h>
#include  <stdio h>
#include 8, Ser.JerDegj0  h,,
#i fndef SLIT
#include “me_addresses  h,<
tiinclude  ,<assembly. h,,

extern int peek’? ( ) ;
extern int poke8 ( ) ;
extern char ‘assem_rwxl  ;
extern char ● assem_nvx2;
extern char ● assem_rWx3 ;
extern char ‘assen_rwx4  ;

rw.c
extern struct assem_board  card! 57 ;

*endif
void F.WX~Ower_On  ( ) ;

l’” STF.UCWRE  definitions “1

/+ RTIOU .Qegist Ors ‘/
strluct  RWA_reg  {

int
char
char
char
char
char
char
char
char
char

!;

dabl_amp

c?yr.amp

dyn_phi

power;
reg Olwr; I*
reg04wr;  1+
reg06wr;  1’
reg02rd;  /“
reg03rd;  /*
reg04rd;  /’
reg05rd;  /’
reg C5rd; 1’
zeg07rd;  ,’”

cOg_amp;
Cog>!li ;
dahL_amp;
dahl_ana;
tiyr_amp;
dyr~hi ;

d,ummy write to enable torw C!4D “ I
load mux control reg “1
?orqwe CW “ /
Dummy read to load Each reg + /
L1pp Pr hyce of !ach rp? + I
Lower byte of tach reg “/
A/I) Converter ‘ I
~orwe ~yz Wraparound +/

Time out ?esc ‘/

in:_stp_size;
n.ax_mtr_!orq;
phases;
po>es;
rate_ cutoff:
rate_ c,u5Q3;
rip_amp;
rip~hi ;
slots;
s5at_amp:
s:at~hi,
ta_wre_5Es
tach_magne  ES ;
tach_Dos_qJa.nt,
vi sc_amp;
b,heel _inert ia;
curre.-. E_scale_fac50r;

-~escrip::on:
Units :
-necnr+m.  {rim.. . . . . . . . . . .
‘Jnits :
-3escrip?i  Dn:

LIF. itS :
-Description:

-Description:

r.Tnits  :
-!lescription:

Units:



rw.c
int_stp_size

max_mtr_t  Orq

phases

poles

rate_ cut Off

rate_ cut On

r ip_amp

slots

stat_ amp

sta5~3. i

tach_70agne Cs

t a_wr d_b E S

vi sc_anp

● .,

-Description.
TdT~~ES ,
-Description:
TLTnits :
-Description:
LTnits  :
-Description:

T-T.n.  ~ ~ s ,

-Description:

PJmerica:  integration step size
sec
Motor torque iimi:
3Jm
Number  of motor ~hases
None
Number  of motor poles (2”#p01es pairs)
Xo>e
P!dA rate at which the motor disables motor
torque. A safty feature to prevent RWA damage
due to overspeed.
radlsec
RWA rate at which the motor re–enables  mo:or
torque once it has been shutdown  due to an
overspeed  condition.
rad/sec
Commutation ripple torq~e phase
rad
R,Amber of motor winding S1OES
None
Anplitude for static forces due to wheel
center of mass of!set from spin axis
X’/(rad/sec!”2
Phase ancle for static forces due to wheel
center of mass offset from spin axis
rad

are set to zero.
rb,n~:~ , rad/sec

~ ~~ ~lJ~off -Description:— — Angular  rate at which the commutation ripple
corq~e frequency reaches the !iycrlist samplin

9
frecpency. At this point , cogqing torques
wou]d be a?iased  in the simulation, so CheY
are se: Cc zero
radl sec

., I

~Jni Es :
-Descriptio~: };

1“ State Vector and State Derivative ‘1
r.m its:

-Description:
TJ~i~~ ,

-Description:
LTnits  :
-Description:

wheel_ state  !

double position;
double rate; 1’
double dahl; /+

wheel_ deriv {
double pose; 1,
double raced; /+

*

double dahld; 1’

RW.AParam_s  r,#a_model r 4 ) ;

?,pJ~_z e g rv.,a_zec ! 4 ; ;

/’ Position of Wheel +/
Angular Velocity of Wheel ● /
dahl friction  term ‘/

Units :
-3escrip:i0rl: Position L@rivative !Maular Velocity) ‘/

Angular Velocity !3eviv. (Arrgular
Acceleration) ‘1
3ahl frictio?  term rate 05 c!m~ue ‘/

are reqJired)

-l)escri~tion:
TLUnits ,

-Rescript ion.:
,,” {.... . . ..-.

/’ derivied  ‘1 whee:_state

whee:_state

wheel_ state

w5ieel_state

whee?_&riv
wheel _cleriv
,h,h.  eel_der i...
wheel _deriv

double
double
doub:e
double
double
double
doub? e

cOg_freq;
2ah?_sig;
rip_ freq;
tor~consc;
w_coa_c~Jto:5 ;
w_rip_cut~f  f;
,#_sd_cuc Off ;

/“
cOg_freq -Description:

rJnic ,
-Description:

Re~uc:ance Cogging  torque  4’ freguemy”

cyc?eslrad
I)hal res: s~ope (change in friction  torque
per change in bearing angle at corque=O
““imtl  for gahl pgdel~. ...-, cf hearip.q  ~r~g .“vml.. ..5. .
lim/rad
Commutation ripple torque ,’ frequency,,
cycles /rafi
YOt Or torqle resolution
Nrm per bit
.hgular  rate at which the reluctance cogging
torque Crequency  reaches the NyqJist sampli?g
frequency. AC this point,  cogging toxr~es
would be ali ased in the simulation, so they
are set to zero
rad/sec
Angular rate at which the commutation ripple
torque frequency reaches the Nyquist sampling
frequency. At this point, cogging  torques
would be aliased in the simulation, so they

dahl_sig

lJni Cs :
-Description:
Units ,
-Ilescription:
~Jnits  :
-!3escripti0n:

rip_freq

tor~cons~

w_c0g_cut05f

/“ Global Variables .* I

Ciou!lle d: = 0.!2625,

double
do,uble
double
double
double
do,uble
double

coef_l = 0.5;
c0ef_2 = 0.5;
c0ef_3 = 1;
coef_4 = 0.166667;
c0ef_5 = 0.333333;
c0ef_6 = 0.233333;
c0ef_7 = 0.:65667;

~Jnits  :
-Description:w_rip_cu!Off

ciouble fractional ~rev_tach [41 ;



doub: e
double
clouh~e
double
double
short
short
short
in?
char

in!

Overspeed [41 ;
nx_Overspeed  ! 47 ;
power [ 4 ! ;
torKword!4! ;
torque !41 ;
tach [4!;
01d_tach_0ucpu5  !41 ;
tach_o,~tpu!  !41 ;
rw_init [4] ;

● assem_rwx[4! ;

I “’ FLTK??o  Ns ‘~1
#i fcief SL!N
char
pee!c8 (char ‘x)

return ‘x;

char
poke8 (char ‘x, char c1

if (b >. 0)
re:,urn fabsf (float) a) :

return -fabs( (float) a) ;
,> ;

1’ Ini:ial Parameters “/
void
P. WA_load_def (rwp, i )

SEr UCE F,’6°AparaP_S ‘r$.~ ;
inc i;

(
FILE ● fp;
char ‘a;
if (i = p)

a . ,, lsim/d~ami cs/rw_naram  S_l “ ;

if (i = 1)
a = ,, fsim/d~.av  ics/rw,_DaramS_2$’  ;

if (i = 2)
a = “ /sim/dynam ics/rw_oarams_? ‘- ;

if (i . 3)
a = ~, /sim/d~ami cs/rb7_3arams_4,’ ;

if ((fp = fopen (a, ,$r4, )) ,. NLU,L) (
fscanf(fp,  “%lf,,,  &rwp>cOg_amp)  ;
fscanf(fp,  ,<%lf,, , &rwp>c  Og~hi) ;
fscanf(fp,  ,,%l!,$,  &r~->dah  L_amp!  ;
fscanf(fp,  ,<%lf f’, &r~->dahl_ang)  ;

rw.c
fscanf (fp, “%lf” , &rwq->dn_amp)  ;
fscanf(fp,  “%If” , &rwp->dyn~hi)  ;
fscanf ( fp, ‘“%15<’,  &~->in E_s Ep_size) ;
fscanf(fp,  “%1:”, &rwp->max_mtr_tO  rq) ;
fscanf (fp, “%lf” , &rwp->phases) ;
fscanf (fpf “%lf” , &rvq->pOles) ;
fscanf(fp, “%lf”, &rwp->rate_cutoff) ;
fscanf~fp,  “%lf”, &rwp->rate_cut  On) ;
fscanf (fp, “%lf” , &rvq->rip_amp) ;
fscanf(fp,  “%lf” , &rv.P->rip~hi)  ;
fscanf(fp, “%If” , &rwp–>sl Ots) ;
fscanf(fp,  “%If” , &rwp->stat_amp)  ;
fscanf(fp,  “%1!” , &rw->stat_phi)  ;
fscanfl( fp, ,,%d!, , &r.q->tcL_wrd_bts) ;
fscanf ( fp, “%lf” , &rwp->visc_amp)  ;
fscanf(fp,  ‘“%d” , &r~p–>tach_magne  Es) ;
fscanf(fp,  “%If”, &~–>wheel_iner Eia) ;
fscanf!fp,  “%1!”, &rm->current_sca  le_fact Or) ;
fc~o~~(fp)  ;

);

voic?
?.wx_power_off ( strut: Ph’A_reg  ● rv.~, char ‘ass em_base )

/‘ Set comman~ed  torgve co zero and power to off ● /
rwp->reg C5wr = G;
rb~->power . O;
/’ Clear Pk? so chat power on functions s~oothly  ‘/
poke S(assem_base  + 2 ‘ 1 + 1,  P) ;
poke~ !assem_5ase  + 2 ● 2 + 1,  C! ;
poke?  (asse~_base  + 2 “ 3 + !, 0) ;
poke’?  (assem_base  + 2 ‘ 4 + 1, Q) ;
poke@ (assem_base + 2 ‘ 5 + 1, !?) :
poke”  !assem_base  + 2 ‘ 5 ~ 1, D! ;
.poke~  (assem_!3ase + 2 ‘ 7 + 1, O) ;

.,

in: x:
/“

x ~ peek. ~ (assem_base  . 2 . Power  cm register  +1)  ;
. . /

x . read_ rwamOwer (assem_base) ;
if (x==jl ~ ;, 1< pwa,-r on> ,/

if (rwp>power ~= 0) { 1+ :f power is 09, is it a POF. ~ ,1
?.h’XDOwer_On ( rwp, Lath) ;

);
/ ‘ get Torque Enable Command ‘ /
rWI–>reg OIWr = peek8 (assem_base  + 2 + I + I) ;
I‘ get 2 ‘ s complement Torque Cmmanti + I
rw->reg06,wr = pee’k8 ~assem_base + 2 ‘ 5 + 1 ) ;

) else r
Fofx~owIe  T_of f ( rwp, assem_base  ) ;

);
);

1’ h’rice information to registers ‘/
~,oid
RWX~utbyte ( struct  F.h7A_zeg  ● rwp, char ● asse.m_base )



rw.c

/“ echo Torque command back to FSW
pokes (assem_base  + 2 ‘ 6 + 1, rwp->req35rd) ;

Asem sim card uses a PAY, therefore, we do noc want to overwrite new
torque information. “’/

);

1’

1’
1’

●

●

●

.
●

●

.

/’ AID Converter info “/
pokeS!asse!?_base * 2 ‘ 5 + 1, rwy>reg05rd)  ;

1- Upper By:e of Tachometer Output ‘1
poke~ (assem_base + 2 ‘ 3 + 1, rw->reg03rd) ;

/+ Lower !3yte of Tachometer 9utPut ‘1
poke~(assem_base + 2 + 4 + 1, rW–>reg D4rcl! ;

I* Dmmy read to loac? tach register ,1
poke8(assem_base + 2 “ 2 + 1, r,*P->reg02rd) ;

/’ Time o!ut Test ‘/
poke9 (assem_base  + 2 “ 7 + 1, rw~->reg97rdl ;

● ✏

double
Rh’A_dahl ( struct !?WAParam_s  ● rwp,

struct wheel _state + state, /’ gimbal a?g?e tro~ dyn trad) ‘/
1’ a?gle rate from dyn (rad/see) ‘/

fric from dahl–model  (N1n\ + /

double fric_do E)
1’ ti~e deriv of dahl fric (Nm/s) “1

double ciahl_fric_li9;
do,uble ~tor~danu? e;
double t emp;

/“ Compute the tine deriva~ive  of the !Jahl bearing  torque : ‘/
if (fabs(state–>dahl)  >= (rw?->dahl_amp) 1 I

dahl_fric_lim  = dsign! (rW->dahl_amp)  , state -~dahl)  ;
} else {

dahl_fric_lim . state ->dahl ;
)

Eemp = 1.0 + dsign(l. !l, state ->rate) ‘ dahl_fric_lim / (rw->dahl_amp)  ;
dtorldangle  . -/rW->dahl_sig)  ‘ dsign(l .0, te!”p! ‘ :abs(temp! ;
(fric_dot)  = state ->rate , dtor~dangle;
return ( fric_dot)  ;

I‘ Power Mocie: CurrenE  = Power I 30 Volts ‘/
void
ma~wr (

double m_rate,
double mtr_tq,

double ● pto Eal)
/“
@dot@ @name rwa~wr
@dot@ @disc This subro,~:ine calcu~ates the power ,Jsage for a single reaction
@dot@ @disc wheel based on wheel speed and applied torque values
@dot@ @returns Ptotal
@dot@ @req model the analog portion of the reaction wheel
● *,

/“’

● Inputs : rw_rate - whee~ rate (rad/see) mtr–tq - torme frOm nO~Or (~m)
*

+ Outputs! Ptotal – Total power usage (hTatt  S)
● *,

/ + Based on Appenix  to CAB dated 11-94 changecl  on 5-24-96 by L .Xo3tanez ‘/

/’” New model based on Model Validation Team inpJt 8/9/95
● Changed 9/27/96 by J. Bunn
.*,

do,lble ~op~wer, CLpower, c2p3wer, c3 Dower, c4Power;
~~pokrer . 9.4999355; I* Watts “1
cl Power = 60.4512337; I* Watts/ (N-n) ● I
c2?0wer . 1,03’54894; 1’ Watts/ (N-n) per radlsec  ● I
~3Do,&er = 0,0~2QC 60; /+ Watts/ (radlsec ‘1
~4po&.~r = 4. firj; /+ Natts ‘1

else

IS*
@dot@

@ciOc@
@cioc(?
@cklc@
@ciOc@
@ciOc@
@dOc@
@tiOc@
.,,

double

“ptotal = c4P0wer;

.ptotal  +. cd Power;

PWAParam_s  , r,.+’p,
tor~wor~,
wheel _stace ‘ state,
‘o~,r_spd_f la,
‘Eorq,
‘power ,
+ rlx L_ O_s_f )

@name P. WA_ana
@disc This routine accepts the current value of C!Ie P.’A’A torque CF16,
@disc bearing angle, bearinG velocity, and the current vlaue 0! the
@disc !3ahl model bearing  friction torque and overspeed :lag
@returns torq, stat _!orcel, stat _50rce2, dyr_tor quel, dw_torque2,  power
@returns nxt_0_s_5
@f~n~5ion*_called fabs, rwa~wr
Preq model che analog portion of the reaction wheel

cOgqing_t  Orq;
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II

II

IIII

,,

II

state ->dahl = O O;

void
stated_ini E (s Cruet wheel _deriv  ‘ stated)
(

sta:ed->posd  = O 0;
stated-> rated = O 0;
stated-  >dahld = O O;

+ifdef OLD
double
tachometer  (s~ruct  R’NAParam_s + u#a_model, s:ruc~ wheel _state + state, short ‘old_ tach_ou
ZpuE, short ‘Each_ 0,utpu5 )
{

);

~edi f

short

double Each_ guan E;
double inc_tach_Output;

‘old_ tach_output . + tach_output  ;
tach_want = 2 0 ‘ 3 ?G 1592654 / rwa_model ->tach_v.agnets;
inc_tach_Outpu  E = (stat e–>raze / tacF._T~an:)  - ‘O Ld_tac.h_O,u  Eput;
+tach_o”tplJt . ● old_cach_ou:p,Jt . inc_ta&_ou:pu: ;
re:urn ( inc_tach_0utpu5  ) ;

tach_qJa.nt  . 2 D ‘ 3.141592654 / Pha_moc?e?- >tach_mag~ets;

ideal _tach . Ista Ee–>ra Ce / tach_uan5) + .125;
real _tach = ideal _5ach . ‘fracci Omal_urev_ca  ch;
+5racti Onal Qrev_Each = Teal_.+ach - ( inc) real _tac5;
return ( (short) real _tach) ;

1

short Eenp_tach;
short overt ach;
S!lor: under tach;
do,uble current;

current = ( (*power / 30.0) / (ma_nmdel ->current_sca  le_fac Eor) ) + 128.0;
rwa_reg->reg05rd . current;
n,a_reg–>reg  O 6rd . rwa_reg->reg  O 6wr;
● tach . tachome ter(rwa_model  , state, fracti Onal Jrev_tach)  ;
temp_tach  . ‘Each;
overtach = O;
undertach = O;
if (’tach > 2047)

overtach  = 0x8000;
if (*tach < -2048)

undertach  = 0x400!J;
temP–taCh = ( ‘tach & OXFFF) ~ overtach undertach;
rwa_reg->reg03rd . (temp_tach >> ‘2 & OXFF) ;
rwa_reg–>reg04rd = (Eemp_tach & OXFF) ;

rw,a_reg->reg02rd  = (O XFFFF & !2xFF) ;
rwa_reg->rea  L37rd  = (C XFF) ;

};

itifdef SL~

char assem_rwxl[Oxfff  f! ;
char assem_rwx2 [Oxffff~ ;
char assem_rwx3 !Oxffff! ;
char assem_rwx4[Oxff  f!; ;
*endi f

int
read_ rwa~ower ( base)

char *base;
f

int power, p4r_stat,Js;

pwr_staEus  . peek8 (base + (OX8000 + 1) ) ;
p~wer = O;
if ( (pwr_status & 9x04) == 0xC4)

power . 1;

return (power! ;
);

in:
rwa_iniz  ( )
[

in? i;

for (i = 0; i < 4; i++)  (

/’ Initialize ‘/
fraction  al Qrel,_tach !i! = C. ’3;
ove~speed!i! = O;
nxt_overspeed [ i ! = !2;
power!i! . O;
torq_wOrd!il . C);
torgue [i! . O;
Each [i] . O;
old_tach_output  [ i: . 0 ;
tach_Outputril  = O;
rv_init [i] = 0;

/+ u.~set registers  to zero and clear any acc,wmulatars  ‘1
RWA_load_def  (&rwa_model ! i! , i ) ;
R. WA_upd~arams ( &rwa_model  [ i ! ) ;
RWX_load_def  (&wa_rec$ ! i ] , &Eacb ‘i 1 ) ;

/’ Initialize state and d.eriviti”e strucc”res  ● I
state_  init(&state[i~  ) ;
state_  ini E(&Eemp_state_l  !il ) ;
state_ init(&Eemp_state_2 !i] ) ;
state_  init(&temp_s  tate_3 ~i) ) ;

stated_ ini E(&statedl  [i! ) :
sEated_init (&stated2 [i; ) ;
stated_ inic(&stated3 [i] ) ;
s5ated_ini  t(&stated4  [i] ) ;

rw_init  [i) = 1;

assem_rwx!O! = assem_rwxl  ;
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assem_rwx [l!
assem_rwx  [2 !
assern_mx [31
return O;

);

in:
wa_100po
I

int

= assen_rwx2  ;
. assem_rwx3 ;
= asse~_rww.4;

remp_stace_3

[i! .posd;
Eemp_state_3

d;

i!. pos . .i“; on = s~ate!i~ position + coef_3 ‘ dt ● stated3

i!. rate = staze [i!. rate + coef_3 ‘ dt ● sta Eed3 !i! .ra Ee

rwa_deriv (& Eemp_s!ate_3 [ i: , torq_word [i] , &stated4  ~ i 1 , &over speed! i)
&nx_overspeed[i  I ,

&rwa_model  !i! , &torque[il  , &power!i) ~ ;
i;

for (i = O; i < 4; i++) (
/ ● ?.ead !?. eaisters  ‘/
u.h,x_uetbyt;  (&rwa_rea  ! i T , assem_z=.ox [i! , &tacb.  [ij ! ; ci2Fi; .posd +
if !rw_ini S!i] == O)

retlrn 0;

if l(rwa rea!i] .reg Olwr— ‘= O) && (Na_flag [i] =. 1)) i] rated +
rwa_flaq[i~  . 2 ;

else if ! (rw,a_reg[i7 .req Clwr ‘= 0~ && (rwa_flag!il  == 2! )
ma_ flag [i] = 0;

else if ((rW.a_reg!i~,  reg O Iwr ,= O] && ~r,$,a_flag[i~  == 0)) { i! .dahld +
poke8!assem._rwx  [i] + 2 + 6 + 1, 0);
~~a_reg Ii! reg05wr  = O ;

);
if /r...a_req !i; reg Ol,tir == O && rwa_reg [i ! .po,wer == 1 ! !

r=..a_flag[i~  =  1;

po!<e8 !assem_rwx[i)  + 2 + 1 + 1, O.XFF) ;

state  [i! .posi:ion += dt + !coef_4 ‘ statedl [i] .posd + c0ef_5 ‘ .sEate

coef_6 + sta Eed3 [i! .posd + c0ef_7  ● stated4 [i! .posdl ;

s:ate [i! rate += dt ‘ (coef_4  ● statedl [i; rated + coef_5 + s5ated2 [

coef_6 ‘ sEa Eed3 [i; rated + coef_7 + sEa Eed4 !i~ rated) ;

state!i) .dahl += dt + (coef_4  ‘ s!atedl [i! .dahld + coef_5 ‘ s5a Eed2 !

fra~:iop.ai~rev_:ach  : i ! ) ;
&ign(rwa_902el  : i ; .~ax_n5r_torq / rwa_nodel ‘i: !0

if (card !i~2! .assem_write_ok  ‘= !?) {
RWX~,JEbyte ( &rwa_reg [ i ! , assem_rwx  [ ~; ) ;

r,#a_rea  [ i  ! reu06wr; card[i  +2?  .assem_write_done =  -1;

);
1

“ seconds. Cac,ulates  the next values of the scaze va!iables
‘1

rwa_deriv (&szate!i!  , tor~word  [i) , &statedl  [i] , &o~,erspeed  [i: , &nx_over
speed [ i ] ,

&&va_nOdel  [I]  , &torque  [i)  , &power [i) ) ;
Eemp_s Eate_l  [i! .posi:ion = Stateli’  .uosi:ion + coef_l  ‘ d: ‘ s~atedl[i!

posti;
temp_state_l !i) rate = state!il .ra Ee + cOef_l + dc ‘ stated! [i] rated;
temp_state_l !i! .dahl = s5’a Ee!il .dahl + coef_l . dt , scateti~!i!  .tiablti;

rwa_der iv(&temp_sca Ee_l ~i ~ , Eorq_word!i) , &scaced2 [ i: , &o”erspeed! i! , &n.
xE_overspeed  [ i; ,

&rwa_m.ode L [i ! , &Corque [i; , &power !i~ ) ;
Eemp_sta Ee_2 [i] position = state~i]  position . coe!_2 + d? ●  stated2 !i!

posd;
temp_state_2  [i] rate = state [i] rate + coef_2 ‘ dt ‘ stated2 yi! rated;
temp_state_2  [i: .dahl . state [i) .dahl + coef_2 + d: ‘ stated2 !i] .dahld;

rwa_deriv (&temp_state_2  [i ] , tor~word [i) , &stated3  [ i ! , &o”erspeed  [i; , &n
xE_overspeed [ i ! ,

&.wa_model  [i! , &tor~e (i; , &pcwer!i}  ) ;
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1’ rwmociel c ‘ /
1’ cassini itl reaction wheel moclel ‘/

1’ for the d_real typede: ‘/
*include ,,t~es-darts  h,,
1. for p~ +/

iinclude ,,generic-  darts .h,,

1+ standard ‘/
#include <string. h>

1“ local “/
#include “ rh_model h),

J. Diagnostics ‘/

extern i3t rro~el ;
extern int diag_time;
extern int diaq_Level  ;
extern FILE ‘ f_rwa;
extern in! cliag_flag;
extern  d_real LMtimetaq;

1“ namelist claza ‘/

,

d_real rw_n,x_ragneEs, rw_ra E e_es C_’.*’n,  rT.,_c  on5_,~,n, n_whee 1 Inert i a, r,.,_v i sc_am,p

rw_model.c

in! i;

/’ namelist  parameters ‘1
rw_dt = 0.125;
n._wheel Inertia  = 0.15146;
rw_num_maqnets = 24. ;
n._visc_amp  = 1.14 fie-4;
n._rate_est_Wn  = O 1 ; 1’ in Hz ‘1
rt+_co2t_Wn = O 01; [* in Hz ‘1
max_mtr_trq = O. 17399;
trq_wrti_bits  = 8;

Added filter to limit maxim,um
● *,

1“ Modification 23 August by
Added fil~er to limit tire. etag
● +,

I +‘ Recent Enhancements :
1. Converted scale factor to

drag torque

J. 3u~n, ?.. Okuno :
tc, between  1 and .15 seconds

variable calculated iu. rw init !? /27/95 :. Bunn)
2. Updated rw_visc_amp  to match CAB (9/27/96 J. B,JrrI)

—

3. Added code to set rate estimate to rate sanple if wheels are just being turned on ( P
/27/96 J. !3unn)
● .,

I’* 11/22/95– Updated to ha”e latest m,ax motor torque
**,

void
rv_init( )

/+ deri~,ed  parameters ‘/
trKscale_fact  Or . max_mtr_crq  / (1 << ( (unsigned int) trq_wrd-bits  - ~) - ~

);
rw_tach_sca  le_factor  = 2 “ PI I rw_n7m_magne5s:
rw lowPassGain2 = exp(- (2. + PI ● rw_ra5e_est_Wn)  ‘ rw_dt ) ;
rwllowPass Gainl = 1 - rw_lowPass Gain2 ;
r._kp = 2. ‘ 0.707 ● (2 * PI ‘ m_cOnt_Wn)  ‘ rw_wheel Inertia;
~_ki = POW( (2 “ PI ● rw_cont_Wn) , 2 ) ● rw,_wheel Tnertia;

/“ initialize ‘/
for (i = 0; i < 4; i++) {

Each_ c_tag_save ! i! = O ;
rw,_rate_est  !i ! = O ;
rw_drag_ELest ‘ i 1 = D ;
old_tach_out  [i! = O;

- 0;old_tr~com!il  –
last~wr!i!  = C;

if ( ‘strcmp(OnOff_str,
rwa_OnOff [ O ! =

if ( ‘s!rcmp(OnOff_str,
rwa_OnOff [ O: =

if ( 1scrc9p (oP.0ff_str,
rw,a_On  Off ! 1 ! =

i! ( lstrcmp(OnOff_str,
rwa_OnOff  [ 1 ! .

if ( ‘<trcmp(on Of f_~ ET,
rk,a_OnOf  f ! 2 ! =

i~ ( strcmp(Onoff_str,
rh,a_On Off :21 =

if ( 1strcmp(0n0f5_str,
rwa_Onof f [ 3 ! =

if I lstrcmp(OnOff_s  Er,
rwa_OnOf f ! 3 1 =

void
rw_model ( temp_tr~con, tr~app

in: pwr_st ! ) ;
i>t new_tach_Out [ ) ;
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